Смекни!
smekni.com

Гидравлика. Гидростатика (стр. 6 из 7)

Отметки уровней ртути от оси трубы:

Плотность ртути
, плотность
воды
.

Решение: Батарейный ртутный манометр состоит из двух последовательно соединенных ртутных манометров. Давление воды в трубе уравновешивается перепадами уровней ртути, а так же перепадами уровней воды в трубках манометра. Суммируя, показания манометра от открытого конца до присоединения его к трубе получим:

3. ОТНОСИТЕЛЬНЫЙ ПОКОЙ ЖИДКОСТИ

3.1. Сведения из теории

Под относительным покоем понимается такое состояние, при котором в движущейся жидкости отдельные частицы не смещаются одна относительно другой. При этом жидкость перемещается как твердое тело. Само движение жидкости в этом случае можно назвать переносным движением. Для этого состояния характерно постоянство формы объема жидкости. Очевидно, что рассматриваемая масса жидкости будет неподвижна в координатной системе, связанной с движущимся резервуаром.

На жидкость, находящуюся в относительном покое, действуют массовые силы (силы тяжести и силы инерции переносного движения), а из поверхностных – силы давления.

Рассмотрим два частных случая относительного покоя: покой при переносном прямолинейном движении и покой при переносном вращательном движении вокруг вертикальной оси.

3.1.1. Относительный покой при прямолинейном движении на наклонной плоскости

Рассмотрим движение резервуара с жидкостью с постоянным ускорением a по наклонной плоскости, образующей угол a с горизонтальной плоскостью (рис. 3.1).

Жидкость в движущемся резервуаре находится под действием силы давления, силы тяжести и силы инерции переносного движения. Ускорение силы инерции
и направлено в сторону, обратную ускорению резервуара a. Результирующий вектор массивных сил определяется диагональю параллелограмма, построенного на ускорениях сил тяжести g и инерции j.

Элемент поверхности равного давления перпендикулярен к диагонали параллелограмма и образует с горизонтом угол b , тангенс, которого равен

(3.1)

Таким образом, поверхности равного давления, образуют семейство параллельных плоскостей с углом наклона к горизонту b .

Необходимо учесть, что если резервуар движется равномерно

, то
и следовательно
и
. В этом случае поверхности равного давления представляют семейство горизонтальных плоскостей.

Если резервуар перемещается под действием силы тяжести (сила трения резервуара о плоскость равна 0), то

,
,
, а поверхности равного давления образуют семейство плоскостей, параллельных плоскости скатывания.

Если резервуар перемещается с ускорением, но вертикально (

), то
, а поверхности равного давления образуют семейство горизонтальных плоскостей.

Найдем закон распределения давления в вертикальной плоскости

. Учитывая, что система координат перемещается вместе с резервуаром,
, а для выбранной плоскости и
, уравнение (2.6) примет вид:

. (3.2)

В этом случае

.

Тогда

(3.3)

После интегрирования имеем:

(3.4)

Для двух точек 0 и 1 с координатами

и
имеем:

(3.5)

или

. (3.6)

По аналогии получаем распределение давления в горизонтальной плоскости:

, (3.7)

если

, то имеем

, (3.8)

а свободная поверхность имеет угол наклона к горизонту (3.1)

. (3.9)

При свободном падении резервуара

и
, то есть во всем объеме давление одинаково.

3.1.2 Относительный покой при вращении вокруг вертикальной оси

В этом случае на жидкость действуют силы давления, силы тяжести и силы инерции переносного вращательного движения ускорения массовых сил будут равны:

Дифференциальное уравнение (2.8) примет вид:

(3.10)

После интегрирования, с учетом, что

получим:

(3.11)

Уравнение (3.11) является уравнением параболоида вращения, а поверхности равного давления образуют семейство параболоидов вращения, сдвинутых вдоль вертикальной оси. Каждый параболоид характеризуется некоторым значением постоянной С. Для параболоида свободной поверхности принимаем, что при

(рис. 3.2)
,
поэтому
. Тогда уравнение свободной поверхности примет вид:

(3.12)

или

(3.13)

Закон распределения давления по объему жидкости получим из уравнения (2.6), подставив в него соответствующие значения X, Y и Z. После интегрирования получаем:

. (3.14)

Постоянную интегрирования

определим из условия, что при
и
, т.е.
. После подстановки в (3.14) окончательно имеем:

. (3.15)

Для частиц жидкости расположенных на одной вертикали можем записать:

(3.16)

где

,

т.е. существует обычный гидростатический закон распределения давления.

3.2. Примеры решения задач

Пример 1. Сосуд с прямоугольным основанием

наполнен водой до высоты h и движется по горизонтальной поверхности с ускорением a (рис. 3.3). Определить избыточное давление воды на дно сосуда у передней и задней стенок в точках 1 и 2.