Смекни!
smekni.com

Колебательные химические реакции - как пример самоорганизации в неживой природе (стр. 2 из 3)

Реакцию Белоусова, как отмечено выше, детально изучил А. М. Жаботинский и его коллеги. Они заменили лимонную кислоту малоновой. Окисление малоновой кислоты не сопровождается образованием пузырьков СО2, поэтому изменение окраски раствора можно без помех регистрировать фотоэлектрическими приборами. В дальнейшем оказалось, что ферроин и без церия служит катализатором этой реакции. Б. П. Белоусов уже в первых опытах заметил ещё одно замечательное свойство своей реакции: при прекращении перемешивания изменение окраски в растворе распространяется волнами. «Колба становится похожей на зебру» (рис 1.1), - говорил Белоусов. Это распространение химических колебаний в пространстве стало особенно наглядным, когда в 1970 г. А. М. Жаботинский и А. Н. Заикин налили реакционную смесь тонким слоем в чашку Петри. В чашке образуются причудливые фигуры – концентрические окружности, спирали, «вихри», распространяющиеся со скоростью около 1 мм/мин (рис 1.2). Химические волны имеют ряд необычных свойств. Так, при столкновении они гасятся и не могут проходить сквозь друг друга. В то же время обычные волны, такие, как волны на поверхности волны или электромагнитные волны, при столкновении испытывают интерференцию, но остаются неизменными после столкновения. Другое уникальное свойство – наличие спиралевидных источников химических волн.

Прошло много десятилетий с момента открытия этой реакции Белоусовым, а её исследованием по-прежнему заняты многие лаборатории в разных странах. Это объясняется весьма общим характером явлений колебаний и распространения волн в самых разных системах. Так распространяется волна возбуждения по нерву, по сердечной мышце, вызывая ритмичные сокращения. Так распространяется зона активности при поверхностном катализе в промышленных химических установках, в «активных средах», когда вслед за проходящей волной через некоторое время восстанавливается способность системы к новому возбуждению. В чашке Петри с «активной химической средой» можно изучать общие свойства таких процессов.

2.4 Изучение механизма колебательных реакций.

Детальный механизм описанной выше реакции всё ещё известен не полностью. В первых работах казалось, что число промежуточных продуктов невелико. Для объяснения природы колебаний было достаточно представить себе, как сначала из малоновой кислоты образуется броммалоновая кислота, и при дальнейшей реакции с ней KBrO3 превращается в KBr. Анион Br- тормозит дальнейшее окисление броммалоновой кислоты, и накапливается окисленная форма катализатора (четырёхвалентного церия или трёхвалентного железа в комплексе с фенантролином). В результате прекращается накопление Br-, и окисление броммалоновой кислоты возобновляется... Теперь ясно, что такой механизм далеко не полон. Число промежуточных продуктов достигло четырёх десятков, и изучение продолжается.

В 1972 г. Р. Нойес и сотрудники показали, что реакция Белоусова-Жаботинского – итог, по крайней мере, десяти реакций, которые можно объединить в три группы – А, Б и В. Сначала (группа реакций А) бромат-ион взаимодействует с бромид-ионом в присутствии Н+ с образованием бромистой и гипобромистой кислот:

BrO-3 + Br- + 2H+ = HBrO2 + HOBr (А1)

Далее бромистая кислота реагирует с бромид-ионом, образуя гипобромистую кислоту:

HBrO2 + Br- + H+ = 2HOBr (А2)

Гипобромная кислота, в свою очередь, реагирует с бромид-ионом, образуя свободный бром:

HOBr + Br- + H+ = Br2 + H2O (А3)

Малоновая кислота бромируется свободным бромом:

Br2 + CH2(COOH)2 = BrCH(COOH)2 + Br- + H+ (А4)

В результате всех этих реакций малоновая кислота бромируется свободным бромом:

BrO-3 + 2Br- + 3CH2(COOH)2 + 3H+ = 3BrCH(COOH)2 + 3H2O(А)

Химический смысл этой группы реакций двойной: уничтожение бромид-иона и синтез броммалоновой кислоты.

Реакции группы Б возможны лишь при отсутствии (малой концентрации) бромид-иона. При взаимодействии бромат-иона с бромистой кислотой образуется радикал BrO.2.

BrO-3 + HBrO2 + H+ → 2BrO.2 + H2O (Б1)

BrO.2 реагирует с церием (III), окисляя его до церия (IV), а сам восстанавливается до бромистой кислоты:

BrO.2 + Ce3+ + H+ → HBrO2 + Ce4+ (Б2)

Бромистая кислота распадается на бромат-ион и гипобромистую кислоту:

2HBrO2 → BrO-3 +HOBr + H+ (Б3)

Гипобромистая кислота бромирует малоновую кислоту:

HOBr + CH2(COOH)2 → BrCH(COOH)2 + H2O (Б4)

В итоге реакций группы Б образуется броммалоновая кислота и четырехвалентный церий.

Колебания концентраций основных компонентов реакции: бромистой кислоты и феррина – в фазовом пространстве представляются в виде замкнутой линии (предельного цикла).

BrO-3+ 4Ce3+ + CH2(COOH)2 + 5H+ → BrCH(COOH)2 + 4Ce4+ + 3H2O (Б)

Образовавшийся в этих реакциях церий (IV) (реакции группы В):

6Ce4+ + CH2(COOH)2 + 2H2O →6Ce3+ + HCOOH + 2CO2 +6H+ (В1)

4Ce4+ + BrCH(COOH)2 + 2H2O → Br- + 4Ce3+ + HCOOH + 2CO2 + 5H+ (В2)

Химический смысл этой группы реакций: образование бромид-иона, идущее тем интенсивнее, чем выше концентрация броммалоновой кислоты. Увеличение концентрации бромид-иона приводит к прекращению (резкому замедлению) окисления церия (III) в церий (IV). В исследованиях последнего времени церий обычно заменяют ферроином.

Из этой (неполной) последовательности этапов реакции Белоусова-Жаботинского видно, сколь сложна эта система. Тем замечательнее, что при учете лишь основных промежуточных продуктов соответствующих дифференциальные уравнения достаточно хорошо описывают наблюдаемые процессы.

Так, достаточно учитывать изменение концентрации всего трех основных промежуточных компонентов реакции HBrO2 (бромистой кислоты), Br- и ферроина (или церия). Первый шаг в реакции – в результате автокаталитической реакции образуется бромистая кислота (быстрый, подобный взрыву процесс), ферроин трансформируется в ферриин (окисленную форму ферроина) (рис.3). Второй шаг – в результате взаимодействия с органическим компонентом феррин начинает медленно трансформироваться обратно в ферроин, и одновременно начинает образовываться бромид-ион. Третий шаг – бромид-ион является эффективным ингибитором автокаталитической реакции (1-й шаг). Как следствие, прекращается образование бромистой кислоты, и она быстро распадается. Четвертый шаг – процесс распада ферриина, начатый на 2-м шаге, завершается; бромид-ион удаляется из системы. В результате система возвращается к состоянию, в котором находилась до 1-го шага, и процесс повторяется периодически. Существует несколько математических моделей (систем дифференциальных уравнений), описывающих эту реакцию, колебания концентрации ее реагентов и закономерности распространения концентрационных волн.

3. Экспериментальная часть.

Мной была воспроизведена колебательная реакция взаимодействия лимонной кислоты с броматом калия.

В работе использовались следующие реактивы:

1. KMnO4 (перманганат калия, марки х.ч.).

2. KBrO3 (калий бромноватокислый или бромат калия, чда).

3. H2SO4 (концентрированная).

4. Лимонная кислота (марки х.ч.).

5. Дистиллированная вода.

Ход работы:

Навеску лимонной кислоты - 2г растворили в 6 мл H2O. В полученный раствор добавили навеску калия бромноватокислого - 0,2г и долили 0,7мл концентрированной серной кислоты. Затем внесли 0,04г перманганата калия и довели объем полученного раствора до 10мл дистиллированной водой. Тщательно перемешали до полного растворения реактивов.

Наблюдения:

Сразу после добавления KMnO4 раствор приобрёл фиолетовую окраску и начал «кипеть». Через 25с, при бурном кипении, цвет раствора стал меняться на коричневый. С течением реакции раствор постепенно светлеет - вплоть до светло-желтого цвета. Через 3мин 45с начинается резкое потемнение раствора (похоже на диффузию жидкости высокой плотности), и через 40с раствор снова становится полностью коричневым. Далее все повторяется с периодом 4,5мин - 5мин. Через довольно большой промежуток времени реакция начинает замедляться, затем и прекращается вовсе (раствор жёлтого цвета).

4.Заключение.

Каждый год в мире проводится несколько международных конференций по динамике нелинейных химических систем, а слова «BZ-reaction» (сокращение: реакции Белоусова-Жаботинского) звучат на десятках других конференций, посвященных проблемам физики, химии, биологии. Изучение реакции Белоусова-Жаботинского имеет значение не только теории активных сред. Эта реакция используется как модель для исследования грозного нарушения работы сердца – аритмии и фибрилляций. А в недавнее время были начаты эксперименты со светочувствительной модификацией этой реакции, когда динамика в этой системе зависит от интенсивности света. Оказалось, что такую реакцию можно использовать как вычислительную машину для хранения и обработки изображения. Светочувствительная модификация реакции Белоусова-Жаботинского может служить прототипом вычислительного комплекса, который возможно, придет на смену ЭВМ.