Смекни!
smekni.com

Свойства и получение ксантогенатов целлюлозы (стр. 1 из 4)

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО

ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

СИБИРСКИЙ

ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ

Кафедра ЦБП и ХВ

Курсовое проектирование

Тема: “Свойства и получение

ксантогенатов целлюлозы”

Разработал:студент ЗХТФ

спец. 250604 Биндарович О.В.

зач. книжка № 826006

Руководитель: _____________

____________________________

г. Красноярск 1998г.


Введение..........................................................................................................

Строение макромолекулы целлюлозы.........................................................

1. Получение ксантогенатов целлюлозы....................................................

1.1 Условия получения ксантогенатов целлюлозы....................................

1.2 Образование химического соединения.................................................

1.3 Степень этерификации...........................................................................

2. Свойства ксантогенатов целлюлозы.......................................................

Список использованных источников:.........................................................

Вве­де­ние

Цел­лю­ло­за яв­ля­ет­ся ве­ще­ст­вом, ши­ро­ко рас­про­стра­нен­ным в рас­ти­тель­ном ми­ре. Она вхо­дит в со­став как од­но­лет­них рас­те­ний, так и мно­го­лет­них, в ча­ст­но­сти – в со­став дре­вес­ных по­род.

Во­прос об ус­ло­ви­ях и ме­ха­низ­ме био­хи­ми­че­ско­го син­те­за цел­лю­ло­зы – один из наи­бо­лее слож­ных и ин­те­рес­ных в хи­мии цел­лю­ло­зы.

Роль цел­лю­ло­зы, ос­нов­но­го ком­по­нен­та кле­точ­ной стен­ки выс­ших рас­те­ний, иг­раю­ще­го роль ме­ха­ни­че­ско­го кар­ка­са, не­по­сред­ст­вен­но свя­за­на с осо­бен­но­стя­ми хи­ми­че­ско­го строе­ния мак­ро­мо­ле­ку­лы и ха­рак­те­ром над­мо­ле­ку­ляр­ной струк­ту­ры. Как об­ра­зо­ва­ние мак­ро­мо­ле­кул цел­лю­ло­зы, так и фор­ми­ро­ва­ние над­мо­ле­ку­ляр­ной струк­ту­ры про­ис­хо­дит в про­цес­се био­хи­ми­че­ско­го син­те­за, по­это­му про­бле­ма ис­сле­до­ва­ния об­ра­зо­ва­ния цел­лю­ло­зы в при­ро­де име­ет два ас­пек­та – соб­ст­вен­но био­хи­ми­че­ский, вклю­чаю­щий во­прос о ха­рак­те­ре ис­ход­ных реа­ги­рую­щих со­еди­не­ний, ки­не­ти­ке и ме­ха­низ­ме син­те­за мак­ро­мо­ле­кул, и струк­тур­но-хи­ми­че­ский ме­ха­низм об­ра­зо­ва­ния эле­мен­тов над­мо­ле­ку­ляр­ной струк­ту­ры и фор­ми­ро­ва­ния слож­ной струк­ту­ры по­ли­са­ха­ри­да как по­ли­ме­ра.

Воз­мож­ность ра­цио­наль­но­го ис­поль­зо­ва­ния цел­лю­ло­зы раз­лич­ных от­рас­лях на­род­но­го хо­зяй­ст­ва для по­лу­че­ния ма­те­риа­лов об­ла­даю­щих тре­буе­мы­ми свой­ст­ва­ми, не­по­сред­ст­вен­но за­ви­сит от вы­яс­не­ния ос­нов­ных во­про­сов строе­ния цел­лю­ло­зы и от под­роб­но­го изу­че­ния свойств цел­лю­лоз­ных ма­те­риа­лов. Это от­но­сит­ся в пер­вую оче­редь к тем от­рас­лям про­мыш­лен­но­сти, ко­то­рые ос­но­ва­ны на хи­ми­че­ской пе­ре­ра­бот­ке цел­лю­ло­зы (при­го­тов­ле­ние ла­ков, пле­нок, пла­сти­че­ских масс, ис­кус­ст­вен­но­го во­лок­на, без­дым­но­го по­ро­ха и т. д.), а так­же к тек­стиль­ной и бу­маж­ной про­мыш­лен­но­сти. Раз­ные пред­став­ле­ния о строе­нии цел­лю­ло­зы при­во­дят к раз­ным вы­во­дам об оп­ти­маль­ных ус­ло­ви­ях про­ве­де­ния про­цес­сов ее хи­ми­че­ской пе­ре­ра­бот­ки и о ме­то­дах, ко­то­рые нуж­но при­ме­нять для из­ме­не­ния в же­лае­мом на­прав­ле­нии фи­зи­ко-хи­ми­че­ских и ме­ха­ни­че­ских свойств по­лу­чае­мых про­дук­тов. По­это­му, ес­те­ст­вен­но, во­про­сам строе­ния цел­лю­ло­зы по­свя­ща­лись и по­свя­ща­ют­ся мно­го­чис­лен­ные ис­сле­до­ва­ния.

Со­вре­мен­ная тео­рия строе­ния цел­лю­ло­зы долж­на от­ве­тить на сле­дую­щие ос­нов­ные во­про­сы:

1. Строе­ние мак­ро­мо­ле­кул цел­лю­ло­зы: хи­ми­че­ское строе­ние эле­мен­тар­но­го зве­на и мак­ро­мо­ле­ку­лы в це­лом; кон­фор­ма­ция мак­ро­мо­ле­ку­лы и ее звень­ев.

2. Мо­ле­ку­ляр­ная мас­са цел­лю­ло­зы и ее по­ли­дис­перс­ность.

3. Струк­ту­ра цел­лю­ло­зы: рав­но­вес­ное фа­зо­вое со­стоя­ние цел­лю­ло­зы (аморф­ное или кри­стал­ли­че­ское); ти­пы свя­зей ме­ж­ду мак­ро­мо­ле­ку­ла­ми; над­мо­ле­ку­ляр­ная струк­ту­ра; струк­тур­ная не­од­но­род­ность цел­лю­ло­зы; струк­тур­ные мо­ди­фи­ка­ции цел­лю­ло­зы.

Толь­ко по­сле вы­яс­не­ния ука­зан­ных во­про­сов мо­гут быть сфор­му­ли­ро­ва­ны дос­та­точ­но обос­но­ван­ные пред­став­ле­ния о строе­нии цел­лю­ло­зы.

Строе­ние мак­ро­мо­ле­ку­лы цел­лю­ло­зы

Мно­гие дан­ные о хи­ми­че­ском строе­нии мак­ро­мо­ле­кул цел­лю­ло­зы иосо­бен­но о строе­нии эле­мен­тар­ных звень­ев, из ко­то­рых со­сто­ит мак­ро­мо­ле­ку­ла, яв­ля­ют­ся в на­стоя­щее вре­мя бес­спор­ны­ми. Их мож­но фор­му­ли­ро­вать сле­дую­щим об­ра­зом.

1. Эле­мен­тар­ным зве­ном мак­ро­мо­ле­ку­лы цел­лю­ло­зы яв­ля­ет­ся ан­гид­ро-D-глю­ко­за. Это до­ка­зы­ва­ет­ся мно­го­чис­лен­ны­ми ра­бо­та­ми [1,4] по ис­сле­до­ва­нию про­дук­тов пол­но­го гид­ро­ли­за цел­лю­ло­зы. При пол­ном гид­ро­ли­зе цел­лю­ло­зы вы­де­ле­на D-глю­ко­за с вы­хо­дом до 96 – 98% от тео­ре­ти­че­ско­го.

2. Эле­мен­тар­ное зве­но в мак­ро­мо­ле­ку­ле цел­лю­ло­зы со­дер­жит три сво­бод­ные гид­ро­ксиль­ные груп­пы. Это до­ка­зы­ва­ет­ся тем что при лю­бых ре­ак­ци­ях эте­ри­фи­ка­ции цел­лю­ло­зы уда­ет­ся по­лу­чить в ка­че­ст­ве про­дук­тов пол­ной эте­ри­фи­ка­ции толь­ко трех­за­ме­щен­ные эфи­ры цел­лю­ло­зы. Из трех гид­ро­ксиль­ных груп­пы эле­мен­тар­но­го зве­на од­на груп­па яв­ля­ет­ся пер­вич­ной и две вто­рич­ны­ми. Эти груп­пы зна­чи­тель­но раз­ли­ча­ют­ся по ре­ак­ци­он­ной спо­соб­но­сти.

3. Гид­ро­ксиль­ные груп­пы в эле­мен­тар­ном зве­не мак­ро­мо­ле­ку­лы на­хо­дят­ся у 2-го, 3-го и 6-го ато­мов уг­ле­ро­да. Это до­ка­за­но иден­ти­фи­ка­ци­ей ос­нов­но­го про­дук­та, по­лу­чен­но­го при гид­ро­ли­зе три­ме­тил­цел­лю­ло­зы, как 2,3,6-три-О-ме­тил-D-глю­ко­зы, а так­же ря­дом дру­гих ме­то­дов. Из это­го сле­ду­ет, что глю­коз­ные ос­тат­ки долж­ны быть свя­за­ны ли­бо 1®4-гли­ко­зид­ны­ми (в этом слу­чае эле­мен­тар­ное зве­но на­хо­дит­ся в пи­ра­ноз­ной фор­ме), ли­бо 1®5-гли­ко­зид­ны­ми свя­зя­ми (при фу­ра­ноз­ной фор­ме эле­мен­тар­но­го зве­на).

На­ря­ду с 2,3,6-три-О-ме­тил-D-глю­ко­зой, при гид­ро­ли­зе три­ме­тил­цел­лю­ло­зы об­ра­зу­ет­ся очень не­боль­шое ко­ли­че­ст­во (0,05–0,2%) 2,3,4,6-тeтpa-О-ме­тил-D-глю­ко­зы за счет кон­це­вых эле­мен­тар­ных звень­ев мак­ро­мо­ле­кул. Этот факт, а так­же дан­ные дру­гих ме­то­дов (на­при­мер, пе­рио­дат­но­го окис­ле­ния) ука­зы­ва­ют на от­сут­ст­вие раз­ветв­ле­ний в мак­ро­мо­ле­ку­ляр­ной це­пи цел­лю­ло­зы.

4. Ос­тат­ки D-глю­ко­зы в мо­ле­ку­ле цел­лю­ло­зы име­ют пи­ра­ноз­ную фор­му. Срав­ни­тель­ная ус­той­чи­вость цел­лю­ло­зы к ки­слот­но­му гид­ро­ли­зу ис­клю­ча­ет воз­мож­ность су­ще­ст­во­ва­ния звень­ев в фу­ра­ноз­ной фор­ме, по­сколь­ку фу­ра­но­зи­ды чрез­вы­чай­но не­ус­той­чи­вы к дей­ст­вию ки­слот.

5. Эле­мен­тар­ные зве­нья мак­ро­мо­ле­ку­лы цел­лю­ло­зы – ан­гид­ро-D-глю­ко­пи­ра­но­за – со­еди­не­ны ме­ж­ду со­бой b-гли­ко­зид­ной свя­зью. Это до­ка­зы­ва­ет­ся тем, что про­дук­том час­тич­но­го гид­ро­ли­за цел­лю­ло­зы яв­ля­ет­ся цел­ло­био­за [4-О(b-D-глю­ко­пи­ра­но­зил)-D-глю­ко­за], со­дер­жа­щая два ос­тат­ка глю­ко­зы, со­еди­нен­ные b-гли­ко­зид­ной свя­зью.

Та­ким об­ра­зом, строе­ние цел­лю­ло­зы мо­жет быть пред­став­ле­но фор­му­лой:

Формула целлюлозы:

Рис. 1

Спра­вед­ли­вость этой фор­му­лы под­твер­жда­ет­ся дан­ны­ми час­тич­но­го ки­слот­но­го и фер­мен­та­тив­но­го гид­ро­ли­за, аце­то­ли­за, пе­рио­дат­но­го окис­ле­ния, ИК - спек­тро­ско­пии и по­ля­ри­мет­рии. Точ­ность ме­то­дов, дос­тиг­ну­тая в на­стоя­щее вре­мя, по­зво­ля­ет счи­тать, что дру­гие ти­пы свя­зей в мо­ле­ку­ле цел­лю­ло­зы встре­ча­ют­ся не ча­ще, чем од­на на 1000 мо­но­са­ха­рид­ных ос­тат­ков.

Ре­гу­ляр­ность строе­ния по­ли­мер­ной це­пи и стро­го оп­ре­де­лен­ная кон­фи­гу­ра­ция асим­мет­ри­че­ских уг­ле­род­ных ато­мов по­зво­ля­ют от­не­сти цел­лю­ло­зу к сте­рео­ре­гу­ляр­ным по­ли­ме­рам.

Су­ще­ст­вен­ное зна­че­ние при ис­сле­до­ва­нии строе­ния мак­ро­мо­ле­ку­лы цел­лю­ло­зы име­ет вы­яс­не­ние во­про­са о кон­фор­ма­ции пи­ра­ноз­но­го цик­ла в мак­ро­мо­ле­ку­ле. Так же, как у про­из­вод­ных цик­ло­гек­са­на, пи­ра­ноз­ный цикл для умень­ше­ния внут­рен­них на­пря­же­ний мо­жет при­ни­мать кон­фор­ма­цию (фор­му) ван­ны или крес­ла. Так как в пи­ра­ноз­ном цик­ле име­ет­ся атом ки­сло­ро­да, то воз­мож­ны две кон­фор­ма­ции крес­ла (С) и Шесть кон­фор­ма­ций ван­ны (В):

Не­об­хо­ди­мо от­ме­тить, что при од­ном и том же строе­нии эле­мен­тар­но­го зве­на в за­ви­си­мо­сти от кон­фор­ма­ции пи­ра­ноз­но­го цик­ла ме­ня­ет­ся про­стран­ст­вен­ная ори­ен­та­ция за­мес­ти­те­лей (ОН-групп) в цик­ле. Гид­ро­ксиль­ные груп­пы в эле­мен­тар­ном зве­не мо­гут быть рас­по­ло­же­ны эк­ва­то­ри­аль­но, т. е. в плос­ко­сти коль­ца, или ак­си­аль­но – пер­пен­ди­ку­ляр­но к этой плос­ко­сти:

Кон­фор­ма­ции пи­ра­ноз­но­го цик­ла

Рис. 2

Гид­ро­ксиль­ные груп­пы, на­хо­дя­щие­ся в ак­си­аль­ном и в эк­ва­то­ри­аль­ном по­ло­же­ни­ях, об­ла­да­ют раз­лич­ной ре­ак­ци­он­ной спо­соб­но­стью. Эте­ри­фи­ка­ции под­вер­га­ют­ся в пер­вую оче­редь гид­ро­ксиль­ные груп­пы, на­хо­дя­щие­ся в эк­ва­то­ри­аль­ном по­ло­же­нии, так как для этих групп сте­ри­че­ские ус­ло­вия осу­ще­ст­в­ле­ния ре­ак­ции бо­лее бла­го­при­ят­ны. Для b-D-глю­ко­пи­ра­но­зы и ее про­из­вод­ных (в том чис­ле и для цел­лю­ло­зы) наи­бо­лее энер­ге­ти­че­ски вы­год­ной фор­мой яв­ля­ет­ся кон­фор­ма­ция крес­ла C1, где все гид­ро­ксиль­ные груп­пы на­хо­дят­ся в эк­ва­то­ри­аль­ном по­ло­же­нии.