Смекни!
smekni.com

Кубический нитрид бора (стр. 1 из 3)

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ:

1. ОБЩАЯ ХАРАКТЕРИСТИКА КУБИЧЕСКОГО НИТРИДА БОРА

2. ОСНОВНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ НИТРИДА БОРА (куб.)

3. СВОЙСТВА БОРАЗОНА

4. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА.

5. ЭЛЕКТРИЧЕСКИЕ И ОПТИЧЕСКИЕ СВОЙСТВА.

6. ПРИМЕНЕНИЕ БОРАЗОНА.

7. РАСЧЁТНАЯ ЧАСТЬ.

8. ВЫВОДЫ.

9. ЛИТЕРАТУРА.


ВВЕДЕНИЕ:

Группа полупроводниковых соединений типа AIIIBV на основе бора - одна из наименее изученных среди полупроводниковых соединений с алмазоподобной структурой.

Однако эти соединения представляют большой интерес из-за их высокой химической стойкости, большой ширины запрещённой зоны и других специфических свойств.

Эти свойства обусловлены особым положением бора в периодической системе.

Бор принадлежит к тем элементам второго ряда периодической системы, атомы которых характеризуются наиболее прочными связями. Бор – проводник весьма тугоплавкий (~23000С) и твёрдый (~3000кг/мм2).Всё это даёт основание полагать, что, соединения типа AIIIBV на основе бора будут обладать интересными свойствами.

Общая характеристика

кубического нитрида бора (боразона)BN.

Нитрид бора BN-электронный аналог углерода. Как химическое соединение он известен уже свыше 100 лет. Различные способы позволяют получать нитрид бора в гексагональной структуре, имеющей очень большое сходство со структурой графита. Это позволяет предполагать, что возможна кристаллизация нитрида бора и в другой структуре, сходной со структурой второй модификации углерода- алмаза.

Первые сведения о получении кубической модификации BN были опубликованы в 1957г.

Причина такого «запоздалого» получения кубического нитрида бора становится ясной, если попытаться распространить аналогию между углеродом и нитридом бора на физико-химические свойства этих материалов. Алмаз термодинамически устойчив лишь при сверхвысоких давлениях. В отсутствии сверхвысоких давлений стабильной формой существования углерода является гексагональная модификация этого вещества - графит. Поэтому можно было ожидать, что и в случае нитрида бора стабильной фазой при относительно невысоких давлениях будет гексагональная форма BN, а получение кубической модификации этого соединения потребует использование техники сверхвысоких давлений. Неудивительно поэтому, что получение кубического нитрида бора стало возможно лишь во второй половине 50-х годов, когда техника сверхвысоких давлений развилась настолько, что позволила получать давления в сотни тысяч атмосфер при температурах в несколько тысяч градусов. Необходимость создания высоких температур для осуществления аллотропического перехода гексагонального нитрида бора в кубический, так же как и в случае перехода, графит – алмаз, связана с тем, что при относительно низких температурах такой переход «заморожен», то есть протекает с настолько малой скоростью, что практически невозможен. Приведённые выше теоретические соображения были подтверждены главным образом в работах Венторфа. Автору удалось, используя технику сверхвысоких давлений, получить нитрид бора BN в структуре цинковой обманки. Этот кубический нитрид бора получил название «боразон».


Основные методы получения боразона

(кубического нитрида бора).

Описанные в литературе методы получения кубического нитрида бора можно разделить на три группы. Первая группа включает металлы, в которых также используют сверхвысокое давление и аллотропический переход в присутствии катализаторов.

BN (гексаг.)BN (куб.)

Ко второй группе относятся металлы, в которых также используют сверхвысокое давление, однако в основе их лежит не аллотропическое превращение нитрида бора, а определённая химическая реакция.

Наконец третья группа – получение кубического нитрида бора при явлениях, близких к нормальному.

Высокое давление, необходимое для реализации двух первых методов, создают с помощью аппаратуры, которую применяют для получения искусственных алмазов. Образец, состоящий из исходного продукта и добавленного к нему катализатора, нагревают с помощью тока, проходящего по нагревательной трубке из графита, тантала и др., расположенной в реакционной камере.

Реакционный сосуд, помещаемый в камеру высокого давления, приведён на рис. 1. Сосуд имеет высоту 11,5 мм и диаметр ~ 9 мм.

С помощью такой техники возможны процессы при давлениях в 100.000 атм. И температуре до 25000С

Схема блока, загружаемого в камеру высокого давления.

1- диск из тантала или титана;

2- нагревательная трубка;

3- куски «катализатора»;

4- гексагональный нитрид бора;

5- изолирующий пирофиллит.

Процесс аллотропического превращения ВN(гексаг.) BN(куб.) заключается в выдерживании гексагонального нитрида бора (с добавкой катализатора) при высоких температурах и давлениях. Постепенно температуру уменьшают до «замораживания» превращения, после чего давление понижается до атмосферного.

Получение исходного продукта – гексагонального нитрида бора – не представляет особых трудностей.

Естественно, что в первых опытах по получению боразона, Венторф пытался облегчить аллотропическое превращение BN(гексаг.) BN(куб.)

Процесс аллотропического превращения BN (гекс.) → BN (куб.) заключается в выдерживании гексагонального нитрида бора ( с добавкой катализатора ) при высоких температурах и давлениях. Постепенно температуру уменьшают до ’’замораживания’’ превращения, после чего давление понижается до атмосферного.

Получение исходного продукта гексанального нитрида бора – не предоставляет особых трудностей.

Естественно, что в первых опытах по получению боразона Венторф пытался облегчить аллотропическое превращение BN (гекс.) → BN (куб.), используя в качестве ’’катализирующих добавок’’ переходные металлы (железо, никель, марганец), т.е. те ’’катализаторы,’’? которые оказались эффективными в случае превращения графит → алмаз.

Однако даже при давлении в 100000 атм. И температурах более 2000 ˚С кубическая форма BN не была обнаружена.

Единственным результатом являлось некоторое укрупнение кристаллов исходного нитрида бора (от 5 до 20 мик.).

Неудачная попытка использовать переходные металлы в качестве ’’катализирующих добавок’’ заставила Венторфа заняться поисками подходящих ’’катализаторов’’.

Ими оказались щелочные и щелочноземельные металлы, а также сурьма, олово и свинец. Использование других элементов не дало положительных результатов.

Найденные ’’катализаторы’’ имели различную эффективность, благо чему в зависимости от применения того или иного из них удавалось осуществлять переход BN (гекс.) → BN (куб.) при различных давлениях(50000-90000 атм.) и температурах (1500-2000 ˚С). Было отмечено, что необходимо для аллотропического превращения давления и температуры возрастают с увеличением атомного веса используемого ’’катализаторы’’. Так, для того чтобы осуществить превращение BN (гекс.) → BN (куб.) с использованием в качестве ’’катализаторов’’ калия или бария необходимо было минимальное давление 70000 атм.

При небольшом понижении давления боразон не образовался, хотя указанные металлы реагировали с гексагональным нитридом бора и диффундировали в него. С другой стороны, при использовании в качестве ’’катализаторов’’ более легких металлов – магния, кальция или лития – уже при давлении в 45000 атм. Наблюдалось образование кубического нитрида бора, причем процесс характеризовался высоким выхлопом этого продукта.

Отмечено также, что эффективность применения ’’катализатора’’ сильно падала в присутствии некоторых процентов воды, борного антифриза и других примесей.

Проведенные исследования позволяют утверждать, что нитрид бора, так же как и углерод, может устойчиво существовать в гексагональной и кубической формах.

Область устойчивого существования боразона лежит при высоких давления и отделена от области гексагонального нитрида бора пограничной линией, соответствующая равновесному существовании обеих кристаллических модификаций нитрида бора. Указанная пограничная линия, так же как и в случае углерода, проходит не параллельно от абсцисс (оси температур), а образует некоторый угол с ней, так что с ростом температуры требуются более высокие давления для того, чтобы переход BN (гекс.) → BN (куб.) оказался возможным.

Сравнение этой пограничной линии с соответствующе линий системы углерода показывают, что при данной температуре переход BN (гекс.) → BN (куб.) наблюдается при более низком давлении, чем переход графит → алмаз.

Рис 2. Фазовая диаграмма углерода.

Фазовая диаграмма боразона сравнена с данной диаграммой.

Оказалось, что в качестве ’’катализаторов’’ можно использовать также нитриды перечисленных выше металлов. Поскольку применение легких металлов имеет определенные преимущества, в качестве ’’катализаторов’’ использовали нитриды лития, магния, или кальция. Эти ’’катализаторы’’ позволяли получать кристаллы кубического нитрида бора при давлениях 44000-74000 атм. И температурах 1200-2000 ˚С. Общее количество боразона, образующего за один опыт, достигало 0,3 г., а размеры отдельных полиэдрических кристаллов доходили до 0,7 мм.

Наиболее подробно исследована система нитрид бора – нитрид лития. Было установлено, что в этой системе проходит образование комплекса примерно состава Li3N·3BN. Этот комплекс действует как расплавленный растворитель, который растворяет гексагональный BN и заставляет выпадать кубический нитрид бора в силу смещения от термодинамического равновесия в область устойчивости кубической формы при рабочем давлении и температуре.