Смекни!
smekni.com

Химия поверхностно-активных веществ (стр. 2 из 8)

Природные ПАВ

К ПАВ природного происхождения прежде всего относятся полярные липиды. Они широко распространены в живых организмах. В биологических системах поверхностно-активные вещества выполняют по сути те же функции, что и синтетические ПАВ в технических системах.

Так, например, они помогают организму преодолеть проблему растворимости малорастворимых веществ, являются эмульгаторами и диспергаторами, а также модификаторами поверхности и т. д. Можно привести много интересных примеров, характеризующих роль ПАВ в биологических системах. Так, соли желчных кислот являются чрезвычайно эффективными солюбилизаторами гидрофобных компонентов крови смеси

Рис. 3. Примеры полярных липидов

фосфолипидов упаковываются в упорядоченные бислои по типу жидких кристаллов ПАВ и из таких структур состоят клеточные мембраны. На рис. 3 приведены примеры наиболее распространенных полярных липидов. Ярким примером природного ПАВ, которое непосредственно, без химических процедур, получают из природных источников, является лецитин. Лецитин экстрагируется из источников, богатых фосфолипидами

Некоторые микроорганизмы эффективно продуцируют природные ПАВ. Можно получать с хорошими выходами как высокомолекулярные поверхностно-активные компоненты, например липополисахариды, так и низкомолекулярные полярные липиды, особенно если микроорганизмы культивируются на водонерастворимом субстрате. На рис. 4 приведена структура низкомолекулярного ацилированного углевода — гликолипида на основе трегалозы, высокая поверхностная активность которого уже доказана. Такие производные и некоторые другие поверхностно-активные вещества, производимые дрожжами, с недавнего времени вызывают большой интерес. Уже потрачено немало усилий на улучшение существующих процессов ферментации и на разработку новых способов культивирования микроорганизмов. Несмотря на достигнутый прогресс, коммерческое использование подобных ПАВ все еще ограниченно из-за их высокой стоимости.

Рис. 4. Поверхностно-активный гликолипид на основе трегалозы, получаемый в процессе ферментации

Нефтехимия и химия растительных масел как источники сырья для получения ПАВ

В последние годы наблюдается тенденция к использованию «зеленых» ПАВ, особенно в быту. Термин «природное ПАВ» служит указанием на природный источник вещества. Однако ни одно ПАВ, используемое сегодня в значительных объемах, нельзя считать природным в полном смысле. За небольшим исключением все ПАВ производятся в процессе органического синтеза, причем нередко в очень жестких условиях, когда неминуемо образуются побочные продукты. Например, моноглицериды широко распространены в природе, но ПАВ, поступающие на рынок как моноглицериды, получают в процессе промышленного гидролиза триглицеридных масел при температурах выше 200 °С, что приводит к образованию побочных продуктов — ди- и трипроизводных глицерина. Ал-килглюкозиды чрезвычайно распространены в живых организмах, но ПАВ этого класса, часто называемые АПГ, получают с помощью многостадийных химических процессов, и их, без сомнения, нельзя считать природными.

Чтобы правильно оценить происхождение ПАВ, полезно разделить их на два класса в зависимости от сырья, из которого их получают: олеохимические и нефтехимические ПАВ. Олеохимические ПАВ производят из возобновляемого сырья, обычно из растительных масел. Нефтехимические ПАВ производятся из небольших «строительных блоков», таких как этилен, получаемый при крекинге нефти. Часто сырьем для ПАВ одновременно служат растительные масла и продукты нефтехимии. Этоксилированные жирные кислоты — один из многочисленных тому примеров.

Иногда олеохимические и нефтехимические способы переработки приводят к получению идентичных продуктов. Например, нормальные спирты с углеводородными радикалами С10-С14, обычно используемые для введения гидрофобных групп при синтезе неионных ПАВ и анионных ПАВ, получают либо гидрированием метиловых эфиров соответствующих жирных кислот, либо по реакции полимеризации этилена с триэтилалюминием в качестве катализатора. В обоих случаях получают неразветвленные алифатические спирты, мало различающиеся по составу гомологов, поскольку он определяется процессом дистилляции. Оба способа производства широко распространены.

Производство ПАВ с использованием в качестве сырья растительных масел не всегда обеспечивает получение менее токсичных и менее экологически вредных ПАВ, чем нефтехимические производства. Однако с учетом круговорота углекислого газа химическое производство, основанное на возобновляемом сырье, всегда более предпочтительно.

Спирты с длинными линейными гидрофобными радикалами часто называют жирными спиртами независимо от способа их получения. Спирты с разветвленными углеводородными радикалами также имеют большое значение в качестве сырья для получения ПАВ. Они производятся только синтетическими способами; среди них наибольшее распространение получил так называемый оксопроцесс, в котором в результате реакции олефина с монооксидом углерода и водородом получается альдегид, восстанавливаемый затем до спирта в процессе каталитического гидрирования. В итоге получается смесь разветвленных и нормальных спиртов, соотношение между которыми можно в известной мере регулировать подбором катализатора и условий реакции. Коммерческие «оксоспирты» представляют собой смеси нормальных и разветвленных спиртов с определенной длиной алкильных цепей. Различные способы получения первичных длинноцепочечных спиртов схематически показаны на рис. 5.

Рис. 5. Различные пути получения первичных спиртов как сырья для производства ПАВ.

Слева направо: полимеризация этилена по реакции Циглеранатты; восстановление метиловых эфиров жирных кислот; гидроформилирование высших олефинов.

Классификация ПАВ по полярным группам

Первая классификация ПАВ основана на заряде полярной группы. Общепринято подразделять ПАВ на анионные, катионные, неионные и цвиттер-ионные. Молекулы ПАВ, входящих в последнюю группу, содержат при обычных условиях оба заряда: анионный и катионный. В литературе они часто называются «амфотерными» ПАВ, но этот термин не всегда корректен и не должен использоваться как синоним термина «цвиттер-ионное» ПАВ. Амфотерное ПАВ — это вещество, которое в зависимости от рН раствора может быть катионным, цвиттер-ионным или анионным. Наглядным примером амфотерных органических веществ служат простые аминокислоты. Подобными свойствами обладает и большинство так называемых цвит-тер-ионных ПАВ. Однако некоторые цвиттер-ионные ПАВ сохраняют один из зарядов в широком диапазоне рН, например соединения, в состав которых входит катионная четвертичная аммониевая группа. Таким образом, ПАВ, содержащее карбоксилатную и четвертичную аммониевую группы, будет цвиттер-ионным вплоть до весьма низких значений рН, но не будет амфотерным.

Большинство ионных ПАВ одновалентны, но встречаются и важные представители двухвалентных анионных ПАВ. На физико-химические свойства ионных ПАВ оказывает влияние природа противоиона. В большинстве случаев у анионных ПАВ в качестве противоиона выступает ион натрия, тогда как другие катионы, например ионы лития, калия, кальция или протонированных аминов, используются в таком качестве только для специальных целей. Противоионами для катионных ПАВ обычно служат галогенид-ионы или метилсульфат-ион.

Гидрофобные группы ПАВ обычно представлены углеводородными радикалами, а также полидиметилсилоксановыми или фторуглеродными группами. ПАВ двух последних типов особенно эффективны в неводных средах.

Для небольшого числа ПАВ существует некоторая неопределенность в классификации. Например, ПАВ, содержащие аминоксиды, иногда относят к цвиттер-ионным, иногда к катионным и даже к неионным ПАВ. Заряд молекул этих веществ зависит от рН водной фазы; можно ситать, что в нейтральном состоянии они несут анионные и катионные заряды или являются неионными дипольными молекулами. Этоксилированные жирные амины, содержащие атом азота аминогруппы и полиоксиэтиленовую цепь, могут быть включены в класс катионных или неионных ПАВ. Неионный характер таких ПАВ преобладает в случае очень длинных полиокси-этиленовых цепей, в то время как при коротких или средних длинах полиоксиэти-леновых цепей физико-химические свойства, как правило, соответствуют катионным ПАВ. Весьма также распространены ПАВ, содержащие в молекуле анионную группу, например сульфатную, фосфатную или карбоксилатную, и полиоксиэтиленовые цепи. Такие ПАВ, например сульфоэфиры и др., обычно содержат короткие полиоксиэтиленовые цепи, и поэтому всегда рассматриваются как анионные ПАВ.

Анионные ПАВ

Полярными группами в анионных ПАВ обычно служат карбоксилатные, сульфатные, сульфонатные и фосфатные группы. На рис. 6 представлены структуры молекул наиболее распространенных ПАВ этого класса.

Анионные ПАВ используются в значительно больших объемах, чем ПАВ других типов. По приблизительной оценке мировое производство ПАВ составляет 10 млн. т в год, из них 60% приходится на долю анионных ПАВ.

Рис. 6. Структуры некоторых типичных анионных ПАВ

Главная причина популярности этих ПАВ — простота и низкая стоимость производства. Анионные ПАВ входят в состав большинства моющих средств, причем наилучшим моющим действием обладают ПАВ с алкильными или алкиларильными группами, содержащими в гидрофобной цепи 12-18 атомов углерода.

В качестве противоионов обычно выступают ионы Na+, К+, NH4+, Са2+ и различные протонированные алкиламины. Ионы натрия и калия усиливают растворимость ПАВ в воде, в то время как ионы кальция и магния способствуют увеличению растворимости ПАВ в масляной фазе. Протонированные амины и алканоламины обеспечивают растворимость ПАВ в обеих фазах.