Электрохимический синтез низкоплотных углеродных материалов для очистки воды (стр. 1 из 3)

На правах рукописи

ЯКОВЛЕВА

ЕЛЕНА ВЛАДИМИРОВНА

ЭЛЕКТРОХИМИЧЕСКИЙ СИНТЕЗ НИЗКОПЛОТНЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ ДЛЯ ОЧИСТКИ ВОДЫ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

2008

Общая характеристика работы

Актуальность темы.

Химия углерода в настоящее время претерпевает бурное развитие. В практическом плане это проявляется в создании новых, с уникальным сочетанием свойств углеродных материалов многопланового применения (адсорбция, катализ, проточные и компактные электроды, футеровочные и уплотнительные листы, шумо-, тепло-, радиационноизолирующие экраны и др.) в химической технологии, синтезе, машиностроении, вакуумной технике. Подобные материалы уже по достоинству оценены в промышленного развитых странах мира и начинают внедряться в России. Одним из таких новых углеродных материалов является пенографит (ПГ) или терморасширенный графит (ТРГ), получаемый при термообработке (ТО) соединений внедрения графита (СВГ). СВГ промышленного производятся преимущественно по нитратной химической технологии, заключающейся в обработке дисперсного графита концентрированной HNOj. Известно электрохимическое получение СВГ, основанное на анодном окислении графита в кислотах. Основные литературные сведения по электрохимическому способу синтеза относятся к малогабаритным компактным электродам, поляризуемым в концентрированных электролитах. Электрохимический синтез СВГ, по сравнению с химическим, легко контролируется и управляется, может быть прерван на любой стадии, что позволяет получать соединения заданного состава с высокой однородностью свойств, снижает расход кислоты и промывной воды, обеспечивает меньшее загрязнение окружающей среды. Кроме того, электрохимическим способом принципиально возможно в одну стадию получать переокисленные СВГ, которые, согласно литературным данным, способны к терморасширению при пониженных температурах ТО. Однако в промышленных масштабах электрохимическая технология не реализована из-за отсутствия технологических разработок и необходимого оборудования. В связи с этим актуальным является изучение процессов анодного интеркалирования дисперсного графита в широком диапазоне концентраций растворов HN03 с целью поиска оптимальных условий синтеза терморасширяющихся соединений графита (ТРСГ) И снижения температуры ТО.

Возможность создания углеродных матриц с регулируемой пористостью на основе ТРГ и различных композитов с его применением открывает широкие перспективы для очистки и подготовки воды. В связи с этим, на наш взгляд, актуальным является поиск способов и условий формирования пористых углеродных материалов, а также изучение их адсорбционных и ионообменных свойств.

Настоящая работа является составной частью обширной программы, выполняемой на кафедре "Технология электрохимических производств" по электрохимическому синтезу СВГ акцепторного типа и использованию данных соединений в различных областях. Научно-техническим консультантом данной работы по изучению ионно-адсорбционных свойств ТРГ и изделий на его основе является доцент кафедры, к. х. н. Соловьева Нина Дмитриевна.

Цель работы состояла в изучении закономерностей электрохимического образования СВГ в растворах HNOs различной концентрации, выборе и оптимизации условий анодного синтеза СВГ, обеспечивающих их последующую переработку в пенографит. Кроме того, цель работы заключалась в изучении адсорбционных и ионообменных свойств полученных пеноструктур графита и создании на основе СВГ фильтрующих элементов для очистки воды от ионов Ni, Сг.

Научная новизна работы.

Впервые проведены системные исследования электрохимического интеркалирования дисперсного графита в 3,0-13,5М HN03. Показано, что началу процесса электрохимического внедрения предшествует индукционный период, в ходе которого в основном происходит окисление поверхностных функциональных групп (ПФГ). Обнаружено, что процесс внедрения NCV - ионов в графитовую матрицу сопровождается совнедрением молекул воды, либо быстрым гидролизом образующихся СВГ. Параллельно реакции интеркалирования протекает ряд поверхностных процессов, в том числе и анодное выделение кислорода. Роль последнего является определяющей для получения СВГ с пониженной температурой терморасширения. Эффект снижения температуры ТО достигается при значительном накоплении кислородных соединений на поверхности графитовой матрицы. Ведение синтеза СВГ в условиях выделения 02, СО, С02 подобного эффекта не дает. Методами РФА и ДСК получены новые результаты по свойствам СВГ.

Установлена возможность регулирования соотношения скоростей объемных и поверхностных реакций варьированием потенциала анодной обработки графита и сообщаемого количества электричества. Выявлена зависимость степени расширения СВГ при ТО от условий анодной обработки графита в Н3 различной концентрации, тем самым созданы условия для реализации управляемого электрохимического синтеза терморасширяющихся соединений графита. Изучены ионообменные и адсорбционные свойства ТРГ и изделий на его основе.

Практическая значимость работы. Определены условия электрохимической обработки дисперсного графита в азотнокислых электролитах, обеспечивающие синтез терморасширяющихся соединений с максимальной производительностью при наименьших энергозатратах. Полученные результаты могут служить основой для разработки эффективной технологии производства СВГ с азотной кислотой. Выявлены условия анодного синтеза, получены образцы СВГ с высокой степенью терморасширения при температурах 200-300°С. Разработана и апробирована методика регистрации толщины графитового слоя в ходе синтеза, что позволило получить ценную информацию о процессах интеркалирования и для проектирования оборудования. Отработан способ формирования самопрессующихся углеродных материалов на основе ТРГ. Показана возможность использования ТРГ и фильтров из него для ионно-адсорбционной очистки воды отряда катионов металлов.

На защиту выносятся следующие основные положения:

1. Кинетические закономерности анодных процессов на дисперсном графитовом электроде в растворах НЖ) 3.

2. Влияние режимов электрохимической обработки дисперсного графита и концентрации HN03 на свойства образующихся СВГ.

3. Результаты исследований физико-химических свойств терморасширенного графита и изделий на его основе.

Апробация результатов работы. Материалы диссертационной работы докладывались на Международной конференции "Прогрессивная технология и вопросы экологии в гальванотехнике и производстве печатных плат".

Публикации.

По материалам диссертации опубликовано 12 работ, в том числе 1 статья в центральной печати, 5 - в сборниках статей.

Структура диссертации. Диссертационная работа состоит из введения, четырех глав, выводов и списка использованной литературы из наименований. Она изложена на страницах, содержит рисунков и таблиц.

Содержание работы. Во введении дано обоснование актуальности темы, сформулированы цель и задачи исследования, научная новизна и значимость работы.

В главе 1 обобщены литературные сведения по соединениям внедрения графита, их структуре, свойствам и способам получения. Систематизирована информация о процессах, протекающих на углеродных материалах при анодной поляризации в различных электролитах.

Приведены данные по сорбционным и ионообменным свойствам углеродных материалов, применяемых в процессах водоочистки и водоподготовки. Проанализировано влияние состава их поверхности на механизм извлечения катионов металлов. Рассмотрены основные современные методы и технологии очистки воды от ионов некоторых металлов.

В главе 2 описаны объекты и методы исследований, использованные в работе. Электрохимические измерения проведены с применением потенциометрического, хроновольтамперометрического и потенциостатического методов. Все значения потенциалов в работе измерены относительно стандартного хлорсеребряного электрода. Приведены условия гидролиза СВГ и перевода полученных соединений в пенографит и углеродные изделия. Свойства синтезированных материалов исследовались с использованием рентгенофазового анализа и дифференциальной сканирующей калориметрии. Представлены методики приготовления модельных растворов и изучения адсорбционно-ионообменных свойств пористых углеродных материалов.

В главе 3 представлены результаты исследований электрохимического интеркалирования дисперсного графита в 3,0-13,5 М растворах Н, данные по потенциостатическому синтезу СВГ и изучению свойств получаемых соединений.

Согласно циклическим потенциодинамическим кривым (ЦПДК) на графитовом электроде при потенциалах: до 1,3 В протекает преимущественно обратимое окисление ПФГ. Подъем тока на анодном полуцикле при более высоких потенциалах вызван наложением на процесс окисления ПФГ реакции внедрения.

Количество электричества в анодной части ЦПДК (Q) с увеличением Еа закономерно возрастает, но уменьшается при циклировании. Qt будет определяться токами восстановления ПФГ, СВГ и адсорбированного кислорода. С ростом интервала сканирования потенциалов, а также по мере циклирования, отмечается увеличение QK. Возрастание QK при циклировании с одновременным уменьшением Qa может быть объяснено лишь увеличением доли объемных реакций интеркалирования - деинтеркалирования в общем токе, по-видимому, вследствие упорядочивания структуры углеродного материала. В данном интервале потенциалов скорость образования СВГ увеличивается, так как отмечается возрастание токов и в катодной области (Сл), обусловленных преимущественно реакциями деинтеркалации. При более высоких потенциалах (Е>1,6В) соотношение QK/Qa перестает изменяться, выявленные тенденции по влиянию циклирования сохраняются, токи процесса деинтеркалации еще более возрастают.