Смекни!
smekni.com

Химия на рубеже веков свершения и прогнозы (стр. 10 из 11)

Наночастицы и кластеры металлов – важное состояние конденсированной фазы. Подобные системы имеют много особенностей и не наблюдавшихся ранее химических и физических свойств. Наночастицы можно рассматривать как промежуточные образования между отдельными атомами с одной стороны, и твердым телом – с другой. У подобных частиц существует зависимость от размера и широко изменяемый набор свойств. Таким образом наночастицы можно определить как объекты размером от 1 до 10 нм, состоящие из атомов одного или нескольких элементов. Предполагается, что это плотно упакованные частицы с произвольной внешней формой и структурной организацией.

Изучение различных свойств обособленных наночастиц составляет одно из направлений нанонауки. Другое направление связано с изучением расположения атомов внутри структуры, формируемой из наночастиц. При этом относительная стабильность отдельных частей наноструктуры может зависеть от изменения кинетических и термодинамических факторов.

В природе и в технологии нанообъекты, как правило, это многочастичные системы, и здесь также приходится сталкиваться с обилием терминов: “нанокристалл”, “нанофаза”, “наносистема”, “наностурктура”, “нанокомпозиты” и т.д. Основу всех названных объектов составляют индивидуальные, изолированные наночастицы. Например, наноструктуру можно определить как совокупность наночастиц определенного размера с наличием функциональных связей. Подобные системы, обладающие ограниченным объемом, в процессе их взаимодействия с другими химическими веществами можно рассматривать как своего рода нанореакторы.

Наночастицы металлов размером менее 10 нм являются системами, обладающими избыточной энергией и высокой химической активностью. Частицы размером порядка 1 нм практически без энергии активации вступают в процессы агрегации, ведущие к образованию наночастиц металлов и в реакции с другими химическими соединениями, в результате которых получаются вещества с новыми свойствами. Запасенная энергия таких объектов определяется в первую очередь нескомпенсированностью связей поверхностных и приповерхностных атомов. Это может приводить к возникновению необычных поверхностных явлений и реакций.

Практически все методы синтеза наночастиц приводят к их получению в неравновесном метастабильном состоянии. С одной стороны, это обстоятельство осложняет их изучение и использование в нанотехнологии для создания стабильных устройств. С другой стороны, неравновесность системы позволяет осуществлять необычные и труднопрогнозируемые новые химические превращения.

40 Установление связи между размером частиц и ее реакционной способностью – одна из наиболее важных проблем нанохимии. Для наночастиц металлов принято различать два типа размерных эффектов. Один – это собственный или внутренний, связанный со специфическими изменениями в поверхностных, объемных и химических свойствах частицы.

Другой внешний, являющийся размерно-зависимым ответом на внешнее действие сил, не связанных с внутренним эффектом.

Специфические размерные эффекты наиболее сильно проявляются в малых частицах и особенно характерны для нанохимии, где преобладают нерегулярные зависимости свойств от размера. Наиболее интересные превращения связаны с областью приблизительно 1 нм. Выявление закономерностей, управляющих активностью частиц размером 1 нм и меньше, является одной из основных проблем современной нанохимии, хотя число частиц – более фундаментальная величина, чем их размер.

Зависимость химической активности от размера реагирующих частиц объясняется тем, что свойства индивидуальных атомов элементов и формируемых из атомов кластеров и наночастиц отличаются от свойств аналогичных макрочастиц. В первом приближении для понимания и анализа химических размерно-зависимых свойств можно сравнивать реакционную способность компактных веществ, наночастиц и атомно-молекулярных кластеров.

В наночастицах значительное число атомов находится на поверхности и их доля растет с уменьшением размера частиц. Соответственно увеличивается и вклад поверхностных атомов в энергию системы. Однако возникает ряд термодинамических следствий, например зависимость от размера температуры плавления наночастиц. С размером, влияющим на реакционную способность, связаны и такие свойства частиц, как изменение температуры полиморфных превращений, увеличение растворимости, сдвиг химического равновесия. На основании известного экспериментального материала можно сформулировать определение: размерные эффекты в химии – это явления, выражающиеся в качественном изменении химических свойств и реакционной способности в зависимости от количества атомов или молекул в частице вещества.

Получение и стабилизация наночастиц Принципиально все методы синтеза наночастиц можно разделить на две большие группы. Первая группа объединяет способы, позволяющие получать и изучать наночастицы, но на основе этих методов трудно создавать новые материалы. Сюда можно отнести конденсацию при сверхнизких температурах, некоторые варианты химического, фотохимического и радиационного восстановления, лазерное испарение, электрохимический способ.

Вторая группа включает методы, позволяющие на основе наночастиц получать наноматериалы и нанокомпозиты. Это в первую очередь различные 41 варианты нанохимического дробления, конденсация из газовой фазы, плазмохимические методы, электрохимические методы и некоторые другие.

Приведенное выше разделение методов отражает еще одну их особенность: получение частиц путем укрупнения отдельных атомов, или подход “снизу”, и различные варианты диспергирования и агрегации, или подход “сверху”.

Подход “снизу” характерен в основном для химических методов получения наноразмерных частиц, подход “сверху” – для физических методов.

Получение наночастиц путем укрупнения атомов позволяет рассматривать единичные атомы как нижнюю границу нанохимии. Верхняя граница – это такое количество атомов в кластере, при дальнейшем увеличении которого уже не происходит качественных изменений химических свойств, и они становятся аналогичными свойствам, например, компактного металла.

Методы исследования наночастиц Размер и физико-химические свойства наночастиц тесно связаны и имеют определяющее значение при изучении химических превращений. При этом существуют некоторые различия в подходах к исследованиям свойств частиц на поверхности и в объеме.

К основным методам определения размера и некоторых свойств наночастиц в газовой фазе относятся следующие:
— ионизация фотонами и электронами с последующим анализом получаемых масс-спектров на квадрупольном и времяпролетном массспектрометре;
— электронная просвечивающая микроскопия на сетках (информация о размере и форме частиц).

Для получения информации о частицах и на поверхности используются:
— просвечивающая и сканирующая электронная микроскопия (информация о размерах и форме частиц, их распределении и топологии);
— дифракция электронов (информация о размере, фазе – твердая\жидкая, о структуре и длине связи);
— сканирующая туннельная микроскопия (определение размера, формы частицы и внутренней структуры);
— адсорбция газов (информация о площади поверхности);
— фотоэлектронная микроскопия (определение электронной структуры);
— электропроводность (информация о зоне проводимости, перколяции, топологии);
— методы ЭПР и ЯМР (информация об электронной структуре).

Наночастицы в науке и технике Катализ на наночастицах. Использование наночастиц металлов для создания новых катализаторов продолжает привлекать пристальное внимание исследователей. Горение метана на воздухе стабильно при температуре выше 42 1300 °С. Однако при этих температурах выделяются вредные оксиды азота, возникает смог. В этой связи актуален поиск новых катализаторов окисления метана. Так твердый кристаллический наноразмерный гексаалюминат бария показал высокую каталитическую активность в реакции горения метана, обеспечивающего горение метана при 400 °С. При модификации оксидом церия получен композит, обеспечивающий горение метана при температуре ниже 400 °С. Высокую каталитическую активность наночастиц, состоящих из металлического ядра (золото) и внешней оболочки (молекулы декантиолов) показали в процессе окисления оксида углерода. Каталитическое окисление оксида углерода применяется для очистки воздуха, конверсии автомобильных выхлопов, в технологии топливных элементов. Железосодержащие наночастицы, стабилизированные в полимерных матрицах, использовались в процессе алкильной изомеризации дихлорбутанов. Наночастицы Рdn (1.n.30), нанесенные на тонкие пленки МgO катализируют циклотримеризацию ацетилена в бензол.

Реакции оксидов. С участием наночастиц оксидов металлов в последнее время осуществлен ряд реакций, представляющих интерес для нанохимии. Высокая активность нанокристаллических оксидов металлов была реализована в реакциях с соединениями, используемыми в качестве химического оружия. Нанокристаллические оксиды магния и кальция легко взаимодействуют с фосфорорганическими соединениями (нервно-паралитические вещества) и полностью превращают токсичное соединение в нетоксичное. Нанокристаллические оксиды щелочно-земельных металлов успешно можно использовать для дезактивации иприта и других боевых отравляющих веществ.

Наночастицы оксидов кобальта, никеля, меди и железа с размером 1-5 нм являются перспективными материалами для изготовления электродов в литиевых батареях.

Получены и детально исследованы такие новые нанокристаллические гибридные материалы типа ядро-оболочка, как TiO2 и MoO3. В полученных материалах энергия фотопоглощения коррелирует с размером частиц. При уменьшении размера частиц TiO2 – MoO3 от 8 до 4 нм энергия поглощения уменьшалась от 2,9 эВ до 2,6 эВ. Полученные материалы более эффективны в фотокаталитическом окислении альдегидов по сравнению с обычно используемым оксидом титана производства фирмы Дегасса (Франция).