Смекни!
smekni.com

Термодинамическая оптимизация процессов разделения (стр. 3 из 4)

Изотермический массообмен

Пусть два резервуара обмениваются потоками вещества, состоящего из нескольких компонентов. Векторы химических потенциалов в подсистемах равны

и
(рис.3).

Рис.3. Схема потоков в процессе изотермического массобмена

Неизотермический массообмен

Подсистемы обмениваются компонентами, причём температуры подсистем различаются (рис.4).

Рис.4. Схема потоков в процессе неизотермического массобмена

,

где

- приток энергии с потоком подводимого вещества.

Изотермический химический процесс

Пусть в открытой подсистеме при постоянной температуре происходит несколько химических реакций вида

,

со скоростями

. Для поддержания стационарного режима исходные вещества подаются в подсистему, а получаемые отводятся в требуемых количествах равновесно, т.е. при тех же значениях химических потенциалов (рис.5).

Рис.5. Схема потоков в системе с химическими превращениями

,

где

- химическое сродство n-той химической реакции.

Тепломассообмен с химическими превращениями

Пусть к подсистеме подводятся тепло от источника с температурой

и исходные вещества при температуре
, а отводятся продукты реакции при температуре подсистемы
(рис.6).

Рис.6. Схема потоков в процессе тепломассообмена с химическими превращениями

Необходимо определить условия организации процесса на каждой из его стадий, когда при заданной интенсивности процесса минимизируется количество производимой энтропии, нахождение минимально возможных значений производства энтропии и соответствующих им функций изменения параметров процесса (концентраций, температур, давлений).

Поскольку производство энтропии обладает свойством аддитивности, то для процесса, идущего в несколько стадий, общее производство энтропии равно сумме производства энтропии на каждой из стадий. Для каждой стадии находят минимальное производство энтропии при тех или иных условиях, внешних для данной стадии. Суммируя найденные значения и оптимальным образом подбирая условия на границах стадий, получим минимально-возможное количество произведённой энтропии

во всём процессе в целом.

Определение предельно возможных значений показателей эффективности. Оценка степени термодинамического совершенства организации процесса.

Подставив в уравнения балансов минимально возможное количество произведённой энтропии

, можно найти предельные значения традиционных показателей эффективности.

Отношение минимально возможного (при заданной интенсивности процесса) количества производимой энтропии

к фактическому (производимому в реальном процессе)
определяет коэффициент термодинамического совершенства организации процесса

.

Отношение предельно-возможного значения обычного показателя эффективности процесса (энергетических и сырьевых затрат, производительности и т.д.)

к фактическому

,

также может использоваться для оценки степени совершенства организации процесса. Это позволяет оценить возможность и целесообразность его дальнейшего улучшения.

Также можно сравнить изменение температуры, концентрации, давления в режиме, при котором минимизируется производимая энтропия, с их фактическим изменением в реальном процессе. В ряде случаев это позволяет выявить новые способы совершенствования организации процесса (путём изменения конструкции аппаратов, добавления новых точек подвода или отвода веществ, и т.п.).

Если параметры одной подсистемы меняются, как следует изменять параметры другой, чтобы обеспечить максимальную среднюю интенсивность целевого потока (если ставится задача о предельной производительности, а не о предельной экономичности при заданной производительности)?

4. Постановка задач оптимизации.

Термическое разделение.

Для системы термического разделения (p=0) поток затрачиваемого на разделения тепла

.

Первое из слагаемых зависит только от параметров внешних потоков и представляет собой обратимые затраты тепла, а второе отражает кинетику процесса и связанную с ней диссипацию энергии.

Используя обозначение идеального цикла Карно

, предыдущее условие можно переписать как

.

Здесь

- эквивалентная обратимая работа, а
- производство энтропии.

Механическое разделение.

Рассмотрим систему разделения, использующую работу с интенсивностью p без подвода и отвода тепла (

), при этом входные и выходные потоки имеют одинаковые температуры и давления.

Подводимая для разделения мощность

.

Первое слагаемое в этом выражении представляет минимальную мощность разделения, которая соответствует обратимому процессу (

). Эта работа равна разности обратимой работы полного разделения исходного потока
и суммарной обратимой работы полного разделения выходных потоков
и

Обратимые оценки сильно занижены, реальная рабо­та разделения может оказаться существенно большей. Поэтому важно приблизить оценки к реальности за счет учета конечной продолжи­тельности процесса или заданной интенсивности потоков. При этом оценки должны включать коэффициенты массопереноса и зависеть от продолжительности процесса

.

Для получения подобных оценок нужно выбрать такое изменение потоков массопереноса во времени или по длине аппарата, при котором работа разделения минимальна. Однако в большинстве аппаратов воз­можности изменения профиля концентраций ограничены. Изменять можно лишь краевые условия и расходы потоков. Схема Вант-Гоффа обладает большими возможностями управления. Поэтому естественно использовать ее для получения оценки минимальной работы разделе­ния при конечном времени.

Во всех рассмотренных примерах из уравнений термодинамических балансов,

вытекало, что показатель эффективности использования энергии в термодинамических системах (технический КПД) монотонно уменьшался с ростом производства энтропии

, то есть с ростом необратимых потерь энергии. Величина
зависит от кинетики тепло- и массообменных процессов, а также кинетики химических реакций. Уравнения кинетики связывают диссипативные потоки энергии и вещества с интенсивными переменными

взаимодействующих подсистем.

Задача оптимальной в термодинамическом смысле организации процесса состоит