Смекни!
smekni.com

Аминокислоты, белки (стр. 2 из 6)

Альдегиды и кетоны или их более активные производные – кетали служат для синтеза

- аминокислот с увеличением числа углеродных атомов на две единицы. Для этого их конденсируют с циклическими производными аминоуксусной кислоты – азалактонами, гидантоинами, тиогидантоинами, 2,5-пиперазиндионами или с её медными или кобальтовыми хелатами, например:


Удобные предшественники

-аминокислот - аминомалоновый эфир и нитроуксусный эфир. К их
-
углеродным атомам можно предварительно ввести желаемые радикалы методами алкилирования или конденсации.
-
кетокислоты превращают в
-
аминокислоты гидрированием в присутствии NH3 или гидрированием их оксимов, гидразонов и фенилгидразонов.



Можно получать

-аминокислоты также непосредственно из
-
кетонокислот, действуя на них аммиаком и водородом над никелевым катализатором:


Некоторые L-

-аминокислоты ввиду сложности синтеза и разделения оптических изомеров получают микробиологическим способом (лизин, триптофан, треонин) или выделяют из гидролизатов природных белковых продуктов (пролин, цистин, аргинин, гистидин).

- аминосульфоновые кислоты получают при обработке аммиаком продуктов присоединения NaHSO3 к альдегидам:

RCHO + NaHSO3 ® RCH(OH)SO3Na ® RCH(NH2)SO3Na

-аминокислоты синтезируют присоединением NH3 или аминов к
,
-ненасыщенным кислотам:

В.М.Родионов предложил метод, в котором совмещаются в одной операции получение

,
-непредельной кислоты конденсацией альдегида с малоновой кислотой и присоединение аммиака:

-аминокислоты получают гидролизом соответствующих лактамов, которые образуются в результате перегруппировки Бекмана из оксимов циклических кетонов под действием H2SO4.
-аминоэтановую и
-аминоундекановую кислоты синтезируют из
,
,
,
-тетрахлоралканов путем их гидролиза конц. H2SO4 до -хлоралкановых кислот с последующим аммонолизом:

Cℓ(CH2CH2)nCCℓ3 → Cℓ(CH2CH2)nCOOH → H2N(CH2CH2)nCOOH

Исходные тетрахлоралканы получают теломеризацией этилена с CCℓ4.

Бекмановская перегруппировка оксимов циклических кетонов. Наибольшей практический интерес представляет перегруппировка оксима циклогексанона:


Получаемый этим путем капролактам полимеризуют в высокомолекулярный поликапромид


из которого изготовляют капроновое волокно.

Свойства аминокислот: амфотерность, реакция по аминогруппе и карбоксилу.

1. Большинство аминокислот – бесцветные кристаллические вещества, обычно хорошо растворимы в воде, часто сладковаты на вкус.

2. В молекулах аминокислот содержатся две группы с прямо противоположными свойствами: карбоксильная группа-кислотная, и аминогруппа с основными свойствами. Поэтому они обладают одновременно и кислотными и основными свойствами. Как кислоты, аминокислоты образуют со спиртами сложные эфиры, а с металлами и основаниями-соли:


Для аминокислот особенно характерно образование медных солей, обладающих специфической синей окраской. Эти вещества являются внутренними комплексными солями; в них атом меди связан не только с атомами кислорода, но и с атомами азота аминогрупп:

Связь между атомом меди и азота осуществляется дополнительными валентностями( за счет свободной пары электронов азота аминогруппы). Как видно, при этом возникают кольчатые структуры, состоящие из пятичленных циклов. На легкость образования подобных пяти- и шестичленных циклов обратил внимание в 1906г. Л.А. Чугаев и отметил их значительную устойчивость. Медь(и другие металлы) в таких внутрикомплексных соединениях не имеют ионного характера. Водные растворы подобных соединений не проводят в заметной степени электрический ток.

При действии едких щелочей на медные соли аминокислот не происходит выпадания гидрата окиси меди. Однако при действии сероводорода происходит разрушение внутрикомплексного соединения и выпадает труднорастворимая в воде сернистая медью

3. Кислотные свойства в моноаминокислотах выражены весьма слобо-аминокислоты почти не изменяют окраски лакмуса. Таким образом, кислотные свойства карбоксила в них значительно ослаблены.

4. Как амины, аминокислоты образуют соли с кислотами, например:

HCℓ∙NH2CH2COOH

Но эти соли весьма непрочны и легко разлагаются. Таким образом, основные свойтва аминогруппы в аминокислотах также значительно ослаблены.

5. При действии азотистой кислоты на аминокислоты образуются оксикислоты:

NH2CH2COOH + NHO2 HOCH2COOH + N2 + H2O

Эта реакция совершенно аналогична реакции образования спиртов при действии азотистой кислоты на первичные амины.

6. С галоидангидритами кислот аминокислоты образуют вещества, которые одновременно являются и аминоксилотами и амидами кислот. Так, при действии хлористого ацетила на аминоуксусную кислоту образуется ацетиламиноуксусная килослота:

CH3COСℓ + NH2CH2COOH СH2CONHСH2COOH + HCℓ

ацетиламиноуксусная килослота

Ацетиламиноуксусную кислоту можно рассматривать и как производное аминоуксусной кислоты, в молекуле которой атом водорода аминогруппы замещен ацетилом CH3CO- и как ацетамид, в молекуле которого атом водорода аминогруппы замещен остатком уксусной кислоты -CH2COOH.

7.

-Аминокислоты принагревании легко отщепляют воду,