Смекни!
smekni.com

Мониторинг гидросферы земли (стр. 2 из 2)

Мониторинг загрязнения вод суши

Проблема загрязнения вод суши (рек, озер, водохранилищ, подземных вод) тесно связана с проблемой обеспеченности пресной водой, поэтому наблюдениям и контролю за уровнем загрязнения водных объектов уделяется особое внимание. Служба контроля за уровнем загрязнения пресных вод является частью национальных систем мониторинга загрязнения окружающей среды [2, 3]. Основная цель службы наблюдений и контроля за уровнем загрязнения вод суши заключается в получении информации о качестве вод, необходимой для осуществления мероприятий как по охране вод, так и по рациональному использованию водных ресурсов. Служба решает задачи контроля за уровнем загрязнения вод по физическим, химическим и гидробиологическим показателям и задачи изучения динамики загрязняющих веществ для прогнозов загрязнения водных объектов. Важная задача мониторинга - изучение процессов самоочищения водных объектов и накопления загрязняющих веществ в донных отложениях и изучение закономерностей выноса веществ в водоемы (моря, озера, водохранилища).

Основными объектами при выборе пунктов наблюдений за уровнем загрязнения поверхностных вод суши являются места сброса хозяйственно-бытовых и промышленных сточных вод, в том числе подогретых вод от ТЭС, ГРЭС, АЭС. Районами повышенного внимания экологи считают также крупные нерестилища и зимовья ценных пород рыб, устьевые зоны рек.

Система мониторинга поверхностных вод призвана обеспечивать получение надежной информации о состоянии водного объекта в любой его точке и в любой момент времени. Наряду с увеличением густоты сети наблюдений это достигается комплексным гидродинамическим и химико-биологическим моделированием процессов массообмена, аккумуляции, трансформации и миграции загрязняющих веществ в водных объектах, изучением взаимосвязи поверхностных и подземных вод, изучением динамики состава органических веществ в процессе химико-биологических превращений.

Например, 30-летний комплексный мониторинг различных природных сред Байкала позволил определить устойчивые изменения гидрохимических показателей притоков озера, рост отрицательного влияния на прибрежные зоны озера (водную толщу и донные отложения) Байкальского целлюлозно-бумажного комбината, Байкальско-Амурской железнодорожной магистрали, портов. Особенно сильное воздействие практической деятельности человека на экосистему Байкала наблюдалось в 60-80-е годы. Большую опасность для экосистем озера представляют малопредсказуемые изменения гидробиологических характеристик водоема: Байкал начал испытывать вторжение новых видов гидробионтов (организмов, обитающих в водной среде), существенные изменения произошли и в составе донных отложений.

Среди загрязняющих веществ, попадающих в притоки и озера, особую опасность представляют серосодержащие вещества, остротоксичные хлорорганические соединения (хлорфенолы, диоксины), тяжелые металлы. Все это свидетельствует о большой вероятности продолжения ухудшения состояния экосистемы Байкала в недалеком будущем.

Часто зонами наибольшей биологической продуктивности водных объектов являются устьевые участки рек (нижнее течение и дельта). Но в этих же зонах контакта речных вод и вод водоприемника (море, озеро, водохранилище) происходит наибольшее накопление всех загрязняющих веществ, смытых реками с их бассейнов. Поэтому они становятся зонами наибольшего экологического неблагополучия. Например, комплексный мониторинг Невской губы позволил выделить экологически опасные зоны водной системы на границе вода-дно. Загрязнение донных отложений играет негативную роль в изменении качества воды, особенно в маловодные годы.

Мониторинг загрязнения морей

Организация загрязнения морских водоемов имеет особенности и требуется для решения таких основных задач, как: 1) контроль за уровнем загрязнения вод и донных отложений по физическим, химическим и гидробиологическим показателям, особенно в курортно-оздоровительных и рыбохозяйственных зонах; 2) изучение баланса загрязняющих веществ в морях и их отдельных частях (заливах) с учетом процессов, происходящих на границе раздела атмосфера-вода, разложения и трансформации загрязняющих веществ и накопления их в донных отложениях; 3) изучение закономерностей пространственных и временных изменений концентраций загрязняющих веществ, установление связи этих изменений с естественными циркуляционными процессами в морях, с гидрометеорологическим режимом и особенностями хозяйственной деятельности [3].

Комплексность мониторинга требует определения некоторых гидрометеорологических параметров, таких, как температура воды, скорость и направление ветра, осадки, атмосферное давление, влажность воздуха. Система наблюдений основывается на создании сети локальных пунктов наблюдений (станций), расположение которых позволяет определять зоны распространения загрязнений. Кроме того, часть сети должна совпадать со станциями многолетних наблюдений, действующих на морях. Распределение станций опирается на знание гидрохимического и гидрометеорологического режимов и рельефа дна в данном районе.

Особую тревогу вызывают участившееся появление на поверхности морей и океанов нефтяных пленок, которые нарушают энерго- и газообмен между океаном и атмосферой, а также накопление тяжелых металлов, например ртути, в Балтийском море и прибрежных районах Японии.

Системы передачи данных наблюдений

Используются различные системы передачи данных от пунктов наблюдений: ручная - полуавтоматическая (по радио или телефонному запросу), временная автоматическая (запрограммированная на передачу по телефону или радио), автоматический индикатор (передача по телефону или радио при изменении параметра на определенную величину), автоматическая (передача по кабелю, телефону или радио сигналов с преобразованием и записью измеряемого параметра), полностью автоматическая (с удаленных станций, оборудованных радиопередатчиком), а также по почте. Автоматические системы передачи находят все более широкое применение.

Обработка, хранение и обобщение информации

Большие объемы собираемой информации и требования к сокращению сроков ее предоставления потребителям обусловливают необходимость использования для ее обработки и обобщения современной электронной техники. Наиболее общая схема автоматизированной обработки, хранения и обобщения информации о состоянии гидросферы представлена на рис. 1, б.

Особенности построения систем и компьютерных технологий обработки данных зависят от методики наблюдений за различными параметрами гидросферы, от оперативности передачи и обобщения информации, технических возможностей национальных служб, природных особенностей территорий. Учет этих особенностей при сборе и обработке данных гидрологических наблюдений на реках отражен, например, в монографии, подготовленной российскими и болгарскими специалистами [4].

Для хранения и автоматизации обобщения информации создаются специальные банки данных. В странах с небольшой по площади территорией принято создавать единые банки для всех компонентов гидросферы или два-три банка, собирающие информацию по атмосферным компонентам гидросферы, водным объектам суши, Мирового океана (включая окраинные и внутренние моря, морские устья рек).

Большое количество информации и значительная протяженность территории России обусловили необходимость создания распределенной по видам информации и территории банков данных. Например, в созданной единой системе государственного водного кадастра России при научно-исследовательских институтах созданы банки данных "Реки и каналы", "Озера и водохранилища", "Моря и морские устья рек", "Качество поверхностных вод", "Подземные воды", "Использование вод", "Ледники". Создаются также центральные банки данных по атмосферным осадкам, снежному покрову и снежникам в горах, по влагозапасам в почве и испарению с суши, подземным водам, а также интегральные банки по компонентам гидросферы в территориальных центрах по гидрометеорологии.

Использование единых требований к форматам хранения данных и создания программных средств облегчает управление базами данных, обобщение и распространение информации среди многочисленных потребителей. Для систематизации, анализа и выдачи по запросам пользователей разнообразных данных перспективно использование единых геоинформационных систем, реализуемых на персональных компьютерах.

Заключение

Современный мониторинг состояния гидросферы Земли основывается на использовании новейших достижений науки и техники. При оборудовании наблюдательных наземных платформ и автоматических станций в Мировом океане, радарных станций и летательных аппаратов в атмосфере для измерения и первичной обработки данных широко используются микропроцессоры. В процессе мониторинга загрязнения природных вод вырабатываются количественные подходы к определению ключевых переменных и параметров, необходимых для понимания факторов, определяющих изменения в водной среде. Обработка и обобщение информации, поступающей со стационарной сети наземных и приземных наблюдений, со спутников Земли, экспедиционных исследований Мирового океана и труднодоступных районов земной суши, осуществляются с использованием электронных вычислительных машин и на основе архивов создаваемых банков данных.

Список литературы

1. Грани гидрологии. Л.: Гидрометеоиздат, 1987. 535 с.

2. Израэль Ю.А. и др. Осуществление в СССР системы мониторинга загрязнения природной среды. Л.: Гидрометеоиздат, 1978. 117 с.

3. Израэль Ю.А. Экология и контроль состояния природной среды. М.: Гидрометеоиздат, 1984. 560 с.

4. Семенов В.А., Герасимов С. и др. Автоматизация обработки гидрологических данных по режиму рек. М.: Гидрометеоиздат, 1988. 213 с.

* * *

Вениамин Александрович Семенов, доктор географических наук, профессор Калужского государственного педагогического университета им. К.Э. Циолковского, ведущий научный сотрудник Всероссийского научно-исследовательского института гидрометеорологической информации - Мирового центра данных. Автор и соавтор 10 научных и научно-справочных монографий, учебных пособий, 130 научных статей по методам оценки водных ресурсов и их изменений под влиянием климата и хозяйственной деятельности, автоматизации сбора и обработки гидрологической информации, создания банков данных.