Смекни!
smekni.com

Анализ возможностей использования сорбентов при очистке сточных вод (стр. 2 из 6)

В 1960 г. Усков обнаружил, ПММА выше температуры стеклования взаимодействует с монтмориллонитом, модифицированным октадециламмонием [17]. В 1961 г. Blumstein [18] при полимеризации винилового мономера in situ получил полимер, внедренный в межслоевое пространство монтмориллонита.

Двумя годами позже Greenland использовал систему поливиниловый спирт-монтмориллонит с целью доказательства того, что полимер может самостоятельно внедряться в межслоевое пространство из водного раствора [19]. В 1975 году Tanihara и Nakagawa получили аналогичный результат при интеркаляции полиакриламида и полиэтиленоксида из водного раствора [20].

Наряду с ионными органическими модификаторами глин могут быть использованы неионные модификаторы, которые связываются с поверхностью глины за счет водородных связей. В некоторых случаях органоглины, полученные с использованием неионных модификаторов оказываются более химически стабильными, чем органоглины, полученные с использованием катионных модификаторов (см. рис. 2) [21].

Как видно, наименьшая степень десорбции (рис.4.) наблюдается в случае неионного взаимодействия между поверхностью глины и органического модификатора. По всей видимости, водородные связи, образованные между этиленоксидной группой и поверхностью глины делают эти органоглины химически более стабильными, чем ОМСС полученные по ионному механизму.

Таким образом, создание нанокомпозитов сводится к взаимодействию между полимером и неорганической фазой. В результате образуются материалы с уникальными свойствами, которыми не обладают обычные полимеры.

Несмотря на обширность проведенных исследований, первая производственная программа была реализована только в 1988 г. в Японии в Центральной научно-исследовательской лаборатории промышленного концерна “Toyota” [22]. Тогда методом предварительного внедрения ε-капролактама в межслоевое пространство с последующей его полимеризацией in situ был синтезирован и изучен полимерный нанокомпозит на основе полиамида – найлон-6.

Современное состояние исследований в области нанокомпозитов на основе слоистых силикатов достаточно полно отражены в обзорах Mulhaupt [23, 24], Giannelis [25], Lagaly [26], Frisch [27] и Gilman [28].

1.2 Методы синтеза полимерных нанокомпозитов на основе слоистых силикатов.

Одно из интереснейших и перспективных направлений в науке о полимерах и материаловедении последних лет - разработка принципов получения полимерных нанокомпозитов.

Различают 3 вида полимерных гибридов с нанодисперным распределением слоистого силиката (рис.5): Первый из них — традиционный микрокомпозит, в котором частицы наполнителя сохраняют исходные размеры (несколько микрометров). Такой материал образуется, если молекулы полимера не проникают между слоями силиката. Другой материал — нанокомпозит с интеркалированной структурой, реализуемой в том случае, когда молекулы полимера внедряются в межслоевое пространство частиц силиката. При этом увеличивается межплоскостное расстояние, но сохраняется упорядоченная слоистая структура частиц. И, наконец, третий материал — эксфолиированный нанокомпозит с расслоением частиц силиката на единичные нанослои, диспергированные в полимерной матрице. В зависимости от условий синтеза, а также при неоднородности структуры компонентов возможно образование смешанных композитов, содержащих указанные выше структуры в различных пропорциях.

Рис.5. Схематическое представление структуры композита, содержащего слоистый силикат

Существуют следующие основные способы получения нанокомпозитов на основе полимеров и слоистых алюмосиликатов: интеркаляция полимера или преполимера из раствора или расплава и интеркаляционная полимеризация in situ (рис. 6).

Наиболее распространенный способ получения полимер-силикатных нанокомпозитов — это механическое смешение расплава полимера с модифицированным органическими катионами слоистым силикатом.

интеркаляция мономера полимеризация in situ

Рис. 6. Схема получения нанокомпозитов in situ методом:

- слоистый силикат; · - мономер.

При этом достигается интеркаляция частиц полимеров (интеркалированные системы), и только часть частиц слоистых силикатов расслаивается на единичные слои наноразмерной толщины. В результате улучшаются физико-механические характеристики, как, например, в случае полистирольных, полиэтиленоксидных, полипропиленовых композиций [29-31]. При получении этим методом полиолефиновых композитов наполнитель модифицируют малеиновым ангидридом [32] или проводят сополимеризацию олефина с полярным сомономером [33-36]. Модифицирование повышает совместимость полимера со слоистым силикатом.

Другой метод получения нанонаполненных полимеров — прямой синтез материала путем интеркаляционной полимеризации, т.е. синтез матричного полимера непосредственно в межслоевом пространстве частиц силиката. При этом полимеризации подвергается мономер или олигомер. Метод позволяет получить действительно эксфолиированные системы с принципиальным изменением физических и механических свойств исходного полимера. Например, модуль упругости, прочность, теплостойкость, барьерные свойства композиций найлон-6 с монтмориллонитом увеличиваются в два раза по сравнению с исходным полимером [37, 38].

Интеркаляционный метод эффективен и при полимеризации полярных мономеров, в частности, для получения нанокомпозитов эмульсионной полимеризацией. Так, например, при достижении полного диспергирования натриевой формы монтмориллонита в воде были получены нанокомпозиты на основе полиметилметакрилата, полистирола, сополимера стирола и акрилонитрила [39-45], поливинилового спирта (ПВС) [46,47], полиэтиленоксида (ПЭО) [48-52], полиакриловой кислоты (ПАК) [48], поливинилпирролидона (ПВП) [53].

Другой подход к синтезу нанокомпозитов «полистирол—монтмориллонит» предложен в [54]: инициатор «живой» радикальной полимеризации закрепляли в межслоевом пространстве решетки силиката путем катионного обмена с ионами натрия, что позволило осуществить полимеризацию стирола непосредственно в межслоевом пространстве силиката с последующей эксфолиацией частиц этого наполнителя под действием образующегося полимера.

Сообщается о применении метода интеркаляционной полимеризации для синтеза нанокомпозитов на основе полиэтилентерефталата [55-58], полиимида [165], а также термореактивных полимерных матриц. Так, в [59-62] изучали влияние типа слоистых силикатов и их модификаторов, отверждающих агентов и условий полимеризации на структуру и свойства нанокомпозитов на основе эпоксидных смол.

1.3 Структура полимерных нанокомпозитов на основе монтмориллонита

В настоящее время в качестве основного способа исследования структуры нанокомпозитов используется метод РСА. Влияние интеркалированного полимера на упорядоченность структуры силиката отражается на изменении интенсивности и формы основных спектральных линий, а степень упорядоченности – на амплитудном диапазоне. Из этого можно сделать вывод о компланарности алюмосиликатных слоев в полученном гибриде.

Так для монтмориллонита характерен пик в малоугловой области (2Ө = 6-8°). Этот пик отвечает за упорядоченность в структуре силиката. Для ОМСС характерно смещение данного пика в сторону уменьшения значения 2Ө. Для полимерных нанокомпозитов при хорошем распределении частиц глины по объёму полимерной матрицы, этот пик исчезает, что говорит об исчезновении характерной упорядоченности в структуре слоистого силиката. Если количество глины превышает некоторый предел распределения её в полимерной матрице, пик появляется вновь. Данная закономерность продемонстрирована на примере полиэтилентерефталата (ПЭТ) (рис.7) [63].

По значению угла 2Ө определяют размер пакета алюмосиликата. Пакет состоит из слоя глины и межслоевого пространства. Его размер увеличивается в ряду от исходного силиката до полимерного нанокомпозита, за счет увеличения межслоевого пространства. В среднем, для монтмориллонита размер пакета равен 1,2-1,5 нм, а для ОМСС – 1,8-3,5 нм.

Возможности РСА, однако, не позволяют получить информацию относительно пространственного распределения силиката в полимерной матрице и форме гибрида, так как все данные являются усредненными. Кроме того, некоторые слоистые силикаты не имеют ярко выраженных базовых пиков, что затрудняет определение интенсивности и формы пиков при сравнении исходного и интеркалированного силиката. Для более глубокого рассмотрения этой задачи используются атомно-силовая микроскопия (АСМ), сканирующая электронная микроскопия (СЭМ) и просвечивающая электронная микроскопия (ПЭМ) [64 – 66].

Дополнительную информацию об интеркалированном гибриде можно получить, используя метод ДСК [67]. Ограничение подвижности интеркалированных полимерных цепей отражается в изменении их вращательной и поступательной подвижности. Аналогичная ситуация наблюдается в сетчатых полимерах, где ограничения подвижности полимерных цепей приводят к увеличению температуры стеклования Тс.

Недавно было предложено использование метода твердофазной спектроскопии ЯМР 13С для характеристики полученных нанокомпозитов. При этом данные ЯМР, объединенные с данными РСА и ДСК, способствовали определению структурных различий между гибридами [68, 69]. Для исследования фазового состава полимера в композитах используют также метод КР [70].

1.4 Свойства полимерных нанокомпозитов

Как уже отмечалось, органически-модифицированные слоистые силикаты являются перспективными нанонаполнителями, которые улучшают механические свойства ряда полимеров, в которых они были диспергированы. Многочисленные исследования подчеркивают уникальные комбинации физико-механических и термических свойств этих материалов уже при низком содержании (обычно менее 5 % масс.) неорганического компонента. К таким свойствам относятся повышенный модуль упругости Юнга [71-73], пониженная газопроницаемость [74, 75], улучшенные тепловые и огнеупорные свойства, высокая ионная проводимость [76, 77] и более низкий коэффициент теплового расширения [78]. Повышенные барьерные свойства нанокомпозиционных материалов обусловлены тем, что силикатные слои непроницаемы для молекул жидкости и газа. Поэтому коэффициент диффузии у нанокомпозитов глина-полимер уменьшается в несколько раз по сравнению с коэффициентом диффузии исходных полимеров. Увеличение размера силикатных пластин приводит к снижению проницаемости [79]. Коэффициент термического расширения также существенно уменьшается при добавлении даже небольшого количества глины (2-3 %) к полимерной матрице, так как жесткие слои силиката плохо деформируются и препятствуют тепловому расширению связанного с ними полимера. Отмечено, что нанокомпозиты, содержащие глину, имеют более высокую температуру разложения, чем чистый полимер, и, следовательно, являются более термоустойчивыми. Показано, что при содержании глины в полимерах около 5 % масс, наблюдается заметное снижение скорости горения, снижается тепловыделение и увеличивается зольность. Природа и процессы, происходящие при горении нанокомпозитов на основе полимеров и глин, подробно описаны обзоре [80].