Смекни!
smekni.com

Почвы как ионообменные сорбенты, особенности сорбции ионов свинца дерново-подзолистой супесчаной почвы (стр. 4 из 7)

Под (ППК) по мнению К.К.Гедройц [7] понимают совокупность соединений, проявляющих способность к обменным реакциям в почве. Совокупность обменных реакций обеспечивается в основном наличием в почве обменных катионов, представленных главным образом элементами первой и второй группами периодической системы. В кислых почвах значительную роль играют Н+ и Al 3+

В обменной форме в почве находятся ионы: Zn2+ Cu2+ Mn 2+ Pb2+

Основные учения об ионном обмене и его исследования в теоретическом и практическом почвоведенье создал К.К.Гедройца. Он рассматривал ионный обмен как одну из форм поглотительной способности почв и предложил разделить следующие виды поглотительной способности:

1. Механическую - свойство почвы задерживать частицы, взмученные в фильтрующей через нее воде.

2. Физическую – концентрирование или разжижение растворенных в почвенном растворе веществ у поверхности соприкосновения твердых частичек почвы с поглощенной влагой, обусловленную поверхностной энергией почвенных частиц.

3. Физико-химическую, или обменную- свойство почвы обменивать некоторую часть содержащихся в твердых фазах катионов на эквивалентное количество катионов, находящихся в соприкосаемом с нею растворе

4. Химическую – образование в почвенном растворе нерастворимых или малорастворимых солей, которые выпадают в осадок и примешиваются к твердым фазам почвы.

5. Биологическую – обязана населяющим почвы растениям и микроорганизмам и заключается в поглощении живыми организмами различных веществ из почвенного раствора [13].

Катионообменная способность - относится к числу фундаментальных свойств почвы. Ее роль можно охарактеризовать следующими положениями:

1) От состава обменных катионов зависит пептизируемость почв, их агрегатность.

2) От состава обменных катионов зависит поглощение органических веществ твердыми фазами, образование органо-минеральных соединений. Способствуют органо-мениральным взаимодействиям катионы железа, алюминия, кальция и магния.

3) Реакции между обменными катионами и катионами почвенного раствора влияют на рН почвенного раствора и его солевой состав. Эти реакции один из основных способов формирования кислотно-основной и других видов буферной способности почв.

4) От состава обменных катионов зависит классификация почв.

5) Законы катионного обмена являются теоретической основой для некоторых видов химической мелиорации почв и известкования кислых почв и гипсования солонцов [7].

Катионный обмен – частный случай ионного обмена, под которым в химии понимают обратимый процесс стехиометрического обмена ионами между двумя контактирующими фазами.

Реакцию обмена катионов Mn+ и Мm+ формально можно записать:

П (Мn+)м + nМм+ = П (Мм+)n + м Мn+

Где П – почвенный поглощающий комплекс.

Почвенный поглощающий комплекс — это совокупность минеральных, органических и органо-минеральных компонентов твердой части почвы, обладающих ионообменной способностью. Согласно определению, в ППК входят и способные к обменным реакциям катионы; в противном случае этот комплекс не смог бы выделить в ходе реакции эквивалентное количество катионов в обмен на катионы почвенного pacтвopa. He все твердые фазы почв способны проявлять катионообменную способность.

Важнейшей характеристикой почвенного поглощающего комплекса и почвы в целом является емкость катионного обмена (ЕКО). Которая равна сумме всех обменных катионов, которые можно вытеснить из данной почвы. Величина ЕКО существенно зависит от рН, взаимодействующего с почвой раствора, и несколько варьирует при замене одного вида насыщающего катиона на другой [7].

Емкость катионного обмена зависит от механического состава почвы и строения веществ, входящих в состав почвенного поглощающего комплекса. Увеличение ЕКО в тяжелых по механическому составу почвах обусловлено не только нарастанием удельной поверхности, но и изменением природы слагающих различные фракции веществ. Пред-илистые и илистые фракции содержат слоистые алюмосиликаты, в них повышено содержание гумусовых веществ.

Основываясь на общих законах ионообменной сорбции, М. Б. Минкин [7] выделяет пять последовательных стадий осуществления реакции обмена катионов раствора на катионы ППК:

1. перемещение вытесняющего иона из объема раствора к поверхности ППК;

2. перемещение вытесняющего иона внутри твердой фазы ППК к точке обмена;

3. химическая реакция обмена катионов;

4. перемещение вытесненного иона внутри твердой фазы от точки обмена к поверхности ППК;

5. перемещение вытесненного иона от поверхности ППК в раствор

6. В почвенной среде поток диффундирующего вещества складывается двумя составляющими: диффузией в поровом растворе и перемещением в адсорбированном состоянии за счет поверхностной диффузии [9].

При количественном описании катионного обмена нередко употребляют уравнения изотерм адсорбции, например уравнения Фрейндлиха, Ленгмюра и др. Иногда и само явление обмена рассматривают как один из видов адсорбции. Между тем различия между адсорбционными явлениями и ионным обменом настолько велики, что на этом следует остановиться подробнее. Реакциям катионного обмена свойственны иные признаки. По Гельфериху [7], для истинного катионного обмена характерны:

1. обратимость реакции.

2. скорость реакции контролируется диффузионными процессами.

3. реакции обмена стехиометричны.

4. как правило, выражена селективность по отношению к различным ионам.

Одно из главных различий между адсорбцией и ионным обменом заключается в том, что обменные катионы являются обязательным компонентом ППК и могут быть только заменены на катионы другого рода, но не удалены вовсе. Попытка пространственного расчленения ППК на анионную часть и катионы привела бы к нарушению принципа электронейтральности. В противоположность этому поверхность адсорбента может быть полностью лишена молекул адсорбата. Общее содержание обменных катионов остается сравнительно постоянным (в пределах постоянства величины ЕКО), тогда как количество адсорбированного вещества является функцией активности адсорбата в объеме фазы. Иными словами, адсорбент и адсорбат могут существовать раздельно, тогда, как ППК составляет единое целое.

6 Пути поступления тяжелых металлов в почву

В последние десятилетия человек стал причиной быстрой деградации почв, хотя потери почв имели место на протяжении всей человеческой истории. Во всех странах мира сейчас распахивают около 1,5 млрд. га земель, а общие потери почв за историю человечества составили около 2 млрд. га, то есть потеряно больше, чем теперь распахивается, причем многие почвы перешли в разряд непригодных бросовых земель, восстановление которых или невозможно, или слишком дорого стоит. Насчитывают не менее 6 типов антропогенно-технических воздействий, которые могут вызвать разного уровня ухудшение почв. В их числе:

1) водная и ветровая эрозия,

2) засоление, подщелачивание, подкисление,

3) заболачивание,

4) физическая деградация, включая уплотнение и коркообразование,

5) разрушение и отчуждение почвы при строительстве, добыче полезных ископаемых,

6) химическое загрязнение почв [10].

Одним из типов антропогенно-технических воздействий является загрязнения почвы тяжелыми металлами (ТМ). Этот вид загрязняющих веществ начали изучать одним из первых. К тяжелым металлам обычно относят элементы, которые имеют атомную массу более 50. Из атмосферы в почву тяжелые металлы попадают чаще всего в форме оксидов, где постепенно растворяются, переходя в гидрооксиды, карбонаты или в форму обменных катионов.

Если почва прочно связывает тяжелые металлы (обычно в богатых гумусом тяжелосуглинистых и глинистых почвах), это предохраняет от загрязнения грунтовые и питьевые воды, растительную продукцию. Но тогда сама почва постепенно становится все более загрязненной и в какой-то момент может произойти разрушение органического вещества почвы с выбросом тяжелых металлов в почвенный раствор. В итоге такая почва окажется непригодной для сельскохозяйственного использования. Общее количество свинца, которое может задержать метровый слой почвы на одном гектаре, достигает 500 — 600 т; такого количества свинца даже при очень сильном загрязнении в обычной обстановке не бывает. Почвы песчаные, малогумусные, устойчивы против загрязнения; это значит, что они слабо связывают тяжелые металлы, легко отдают их растениям или пропускают их через себя с фильтрующимися водами. На таких почвах возрастает опасность загрязнения растений и подземных вод [10].

В этом заключается одно из трудноразрешимых противоречий: легко загрязняющиеся почвы предохраняют окружающую среду, но почвы, устойчивые к загрязнению, не обладают защитными свойствами в отношении живых организмов и природных вод.

Источники эмиссии тяжелых металлов и пути их проникновения в окружающую среду весьма разнообразны, они могут носить как природный, так и онтропогенный характер. Большинство тяжелых металлов поступает в окружающую среду в результате деятельности человека. По данным O.J.Nriaga [14], источником природной эмиссии тяжелых металлов в окружающую среду является извержение вулканов, лесные пожары, морская вода и д.р. Главные антропогенные источники поступления тяжелых металлов в биосферу - топливные электростанции, предприятия по добычи и переработке цветных металлов, транспорт, машиностроительство, химическая промышленность, сельскохозяйственное производство. При этом общая масса металлов, поступающих от природных источников значительно ниже, чем от антропогенных: свинца- в 17,2 раза, кадмия-8,8.цинка -7,2 ,меди -3,никеля-1.9 [14]. Техногенное поступление тяжелых металлов в окружающую среду происходит в виде пыли газов и аэрозолей (возгонка металлов промышленных предприятий и автотранспорта), в составе сточных вод бытовых отходов.