Смекни!
smekni.com

Общие закономерности их действие на живые организмы (стр. 3 из 5)

Иногда животных, например, многих насекомых, поедающих растения, а также паразитов, хищников рассматривают в качестве естественных врагов тех организмов, за счет которых они существуют. Такой подход в принципе неверен. Паразиты и хищники, зоофаги и фитофаги являются факторами среды по отношению к своим хозяевам, жертвам и т.п. Следовательно, с обще экологических позиций все они необходимы друг другу. В естественных условиях ни один вид не стремится и не может привести к уничтожению другого. Более того, исчезновение какого-либо естественного “врага” из экологической системы может привести к вымиранию того вида, на котором развивается этот “враг”.

Все эти обстоятельства человек должен учитывать при проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования их в своих интересах, а также учитывать косвенные последствия, которые могут при этом иметь место.

4 Пищевые цепи, пищевые сети и трофические уровни, энергия в экологических системах.

Рассматривая общий поток энергии, характеризующий среду экосистемы, выделим часть которая, проходит через живые компоненты экосистемы.

Перенос энергии пищи от ее источника - автотрофов (растений) через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой цепью. Пищевые цепи можно разделить на два типа: пастбищная цепь, которая начинается с зеленого растения и идет далее к пасущимся растительноядным животным (т.е. к организмам, поедающим живые растительные клетки или ткани) и к хищникам (организмам, поедающим животных); и детритная цепь, которая от мертвого органического вещества идет к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя, так называемые, пищевые сети.

В сложных природных сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню. Первый трофический уровень представлен первичными продуцентами или автотрофами; к ним относятся зеленые растения, которые способны использовать солнечный свет для образования химических соединений, богатых энергией. Второй трофический уровень образуют растительноядные животные, называемые первичными консументами. Плотоядных, которые питаются растительно - травоядными называют вторичными консументами или первичными хищниками; они занимают третий трофический уровень. Хищники, питающиеся первичными хищниками, в свою очередь, образуют четвертый трофический уровень и называются третичными консументами или вторичными хищниками. Точно также животные, потребляющие вторичных хищников называются четвертичными консументами или третичными хищниками, они находятся на пятом трофическом уровне и т.д.

Эта трофическая классификация относится к функциям, а не к видам как таковым. Поскольку многие животные всеядны и питаются как растениями, так и животными, т.е. одновременно получают энергию с нескольких разных трофических уровней, их невозможно отнести к определенному уровню. Принято считать, что такие организмы представляют сразу несколько трофических уровней, а их участие в каждом уровне пропорционально составу их диеты.

В исследованиях структуры сообществ понятие трофического уровня оказалось чрезвычайно полезной абстракцией. Оно облегчает изучение потока вещества и энергии через сообщество и подчеркивает различия между взаимодействиями, которые протекают внутри трофических уровней и между ними.

Принцип организации пищевых цепей и действия двух законов термодинамики можно уяснить, рассмотрев схему переноса энергии на рис. 3. На этой схеме четырех-угольники изображают трофические уровни, "трубы" - потоки энергии от каждого уровня или к нему. Как требует первый закон термодинамики, приток энергии уравновешивается ее оттоком, и каждый перенос энергии сопровождается ее рассеянием в форме недоступной для использования тепловой энергии (при дыхании), как того требует второй закон.

Рис.3. Упрощенная схема потока энергии, показывающая три трофических уровня (I, II и III ) в линейной пищевой цепи ( E.Odum, 1963.)

I - общее поступление энергии; LA - свет, поглощаемый растительным покровом; PG - валовая первичная продуктивность ; А - общая ассимиляция; PN - чистая первичная продукция; P2-3 - вторичная продукция (консументов); NU- неиспользуемая (накапливаемая или экспортируемая энергия); NA- не ассимилированная консументами (выделенная с экскрементами) энергия; R - дыхание.

Представленная схема потоков энергии на трех трофических уровнях сильно упрощена. Но она позволяет ввести принятые в литературе обозначения разных потоков и ясно показывает, что на каждом последующем уровне поток энергии сильно уменьшается независимо от того, рассматривается ли общий поток (I - общий поток энергии и А - общая ассимиляция) или компоненты Р (продуктивность биомассы)и Р (дыхание). Показано, что на первом трофическом уровне поглощается около 50 % падающего света, а превращается в энергию пищи всего 1 % поглощенной энергии, а также "двойной метаболизм" продуцентов (т.е. валовая и чистая продукция). Вторичная продуктивность ( Р ) на каждом после-дующем трофическом уровне консументов составляет около 10 % предыдущей , хотя на уровне хищников эффективность может быть выше, скажем 20 %. Если питательная ценность источника энергии велика (например, продукт фотосинтеза, извлекаемый или выделяемой прямо из растительных тканей), то эффективность переноса энергии может быть гораздо выше. Но поскольку и растения, и животные производят, много трудно перевариваемого вещества (целлюлоза, лигнин, хитин), а также химические ингибиторы, препятствующие поеданию различными консументами, средняя эффективность переноса энергии между трофическими уровнями в целом составляет 20 % и менее.

5.Эволюция биосферы земли.

Универсальный эволюционизм позволяет рассматривать развитие мирового эволюционного процесса в контексте непрерывного разрушения старых организационных форм существования материи, которые дают материал для возникновения новых, в том числе и более сложных. Вместе с появлением новых форм организации, то есть новых систем, возникают и новые принципы отбора, которые не зачеркивают тех, которые определяли ранее развитие мира.

При развитии биосферы непрерывно росли разнообразие и сложность организационных структур живого мира (как единой системы-биосферы, так и ее компонентов).

Но сохранялась и иерархия: примитивные формы жизни не исчезают, а продолжают играть важнейшую роль в функционировании биосферы как единой системы. «Все держится на прокариотах» и «примитивные форма жизни - основа элитарных» -эти два утверждения сохраняют свое значение относительно всех миллиардов лет эволюции биосферы, обеспечивая ее стабильность. Эти утверждения не теряют своего смысла и истории общества. Элитарные структуры открывают новые горизонты развития, а примитивные обеспечивают стабильность организации живого вещества.

Возникновение жизни, поставившие себе на службу с помощью фотосинтеза энергию Солнца, резко ускорило все процессы земной оболочки. Она становится частью новой системы биосферы , которая начинает развиваться в совершенна ином темпе и по иным законам.

За относительно короткое по экологическим масштабам время биосфера представляет множество перестроек. Одна из них – появление эукариота и кислородного дыхания – ещё раз многократно ускорила эволюцию биосферы. Переход от прокариота ( самые древние организмы характеризующие отсутствием в клетках постоянного ядра ) к эукариота ( высшие организмы ) по своим масштабам и последствиям сопоставим с появлением жизни : прокариоты не знали смерти – их можно было уничтожить , но смерть не бы-ла закодирована в их генетическом аппарате. Если жизнь была «открытием » прокариота и их предшественников, то смерть пришла вместе с эукариотами . Возможность смены поколений была ещё одной причиной, многократно ускорившей эволюционные процессы .

Создавая сложнейшие технически управляемые системы, человек обеспечивает их стабильность, обеспечивает их стабильность. В природных системах всё ни так : отдельный биоценоз, а тем более биосфера в целом , сохраняет свою стабильность за счёт неустойчивости, гибели отдельных ее элементов . Совершенствование природных систем про-исходит за счет замены её компонентов всё более совершенными . То же самое имеет место в общественных социальных системах , и в экономике в частности.

В истории информационной эволюции биосферы особую роль играет становление разума. В самом деле, нейроны, сами по себе, практически одни и те же у всех живых существ, обладающим мозгом. Однако ( и это экспериментальный факт ) существовал некоторый порог сложности связей между нейронами и возможностью увеличения их количества, после которого мы уже можем говорить об интеллекте, о разуме, о мышлении.

Мышление как природные явление рассматривается подобно феномену жизни, в качестве некоторого системного свойства. Его особенности не выводимы из свойств от-дельных нейронов и отдельных связей между ними, играющих, по – видимому, лишь роль каналов для передачи информации. И у нас пока нет никакого намёка на понимание такого алгоритма развития, который наделил совокупность нейронов совокупностью выделять собственное « Я », фантазировать, строить картины мира, одним словом ,способностью к мышлению.

Антропогенные воздействия на окружающую среду оказались деструктивными. Они « заменили » биогенную эволюцию, разрушив естественные системы природы. Эволюция вынуждена идти экстенсивно, под воздействием внешних факторов, с темпом, диктуемым человеком , а не ходом естественных явлений.