Смекни!
smekni.com

Полные лекции по аэродинамике и динамике полета. Часть 1 (стр. 2 из 4)

Известные теоремы векторных полей [4] применимы и к полю скоростей. Теорема Стокса:

(1.9)

справедлива при ориентации обхода контура L и нормали к натянутой на него поверхности

по правилу правого винта, а теорема Остроградского-Гаусса:

(1.10)

при условии, что замкнутая поверхность

ограничивает объем W.

Полную производную по времени от скаляра A(

,t) можно определить по известной [4] формуле:

(1.11)

Производную

от интеграла по произвольному подвижному объему W, где от t зависит не только подынтегральная функция, но и объем, вычислим с помощью определения производной:

В последнем пределе W'W образуется сдвигом элементарных площадок dS поверхности S, ограничивающей W, на расстояние VndS. Кроме того, при Dt ® 0: f(

,t+Dt) ® f(
,t) и деформированная поверхность S¢ ® S, поэтому предел принимает значение
(сравните с (1.4)) или
по теореме Остроградского-Гаусса (1.10). Откуда в силу уравнения (1.11):

(1.12)

Вектор

¹ 0 тоже можно рассматривать, как поле вектора ротора скорости
(
,t) вихревое поле. Непосредственной проверкой легко убедиться, что всегда div
= 0. Отсюда по теореме Остроградского-Гаусса следует, что поток ротора скорости сквозь любую замкнутую поверхность равен нулю:

. (1.13)

В вихревом поле по аналогии с полем скоростей выделяют вихревую линию:

(1.14)

и вихревую трубку. Так как через боковую поверхность вихревой трубки по определению нет потока ротора скорости, то из (1.13) вытекает постоянство такого потока через любое ее поперечное сечение (первая кинематическая теорема Гельмгольца о вихрях). Эта величина называется интенсивностью вихревой трубки. Согласно теореме Стокса (1.9) она равна циркуляции скорости по контуру, образующему вихревую трубку:

. (1.15)

1.3. Уравнение неразрывности

Как известно, плотность вещества в физике вводится предельным переходом:

, где в механике сплошной среды следует понимать под Dm массу вещества, заключенную в объеме DW. Посмотрим, как будет выглядеть закон сохранения массы
для произвольного подвижного объема сплошной среды, для которого
. Из (1.12) тогда следует:

,

или в силу произвольности объема W:

. (1.16)

Это уравнение носит название уравнения неразрывности (непрерывности).

Рассмотрим частные случаи уравнения неразрывности. Для стационарного (установившегося) движения сплошной среды из (1.16) с учетом (1.7) следует:

, (1.17)

а если, кроме того, среда несжимаемая (

, в том числе и неоднородная), то:

. (1.18)

Т.е. по теореме Остроградского-Гаусса (1.10) установившийся поток скорости несжимаемой среды (1.4) сквозь любую замкнутую поверхность равен нулю. Так как через боковую поверхность трубки тока по определению нет потока скорости, то поток через любое ее поперечное сечение одинаков:

(1.19)

и численно равен объемному расходу сплошной среды. Отсюда можно сделать вывод: внутри объема несжимаемой сплошной среды трубки тока (а также линии тока) не могут ни начинаться, ни заканчиваться.

1.4. Безвихревое и вихревое движение

Движение сплошной среды в некоторой области называется безвихревым, если в ней

= 0, и вихревым, если
¹ 0 хотя бы в части этой области, называемой вихрем.

Из определения

(1.6) следует, что вихревое движение характеризуется наличием вращения каждой частицы. Этот факт иллюстрируется рис. 1, на котором крайние точки бесконечно малой частицы среды имеют разные скорости в силу наличия ненулевой величины
. Если центр этой частицы покоится, а все другие частные производные скорости равны нулю, то очевидно, что
¹ 0 характеризует именно вращение бесконечно малой частицы среды. В безвихревом движении такого вращения нет и каждая частица среды совершает лишь поступательное движение. Вообще говоря, вихревое движение возникает в реальной природе, благодаря наличию границ (свободной поверхности, твердых стенок или твердых тел), а также явлению вязкости.

Примерами безвихревого движения могут служить:

состояние покоя среды,

поступательное движение,

источник и сток (когда частицы среды выходят из точки или входят в нее строго по лучам),

движение среды вокруг некоторого кругового цилиндра по концентрическим окружностям со скоростью, обратно пропорциональной расстоянию от оси цилиндра.

Примерами вихревого движения могут служить:

плоский сдвиг (когда скорость частиц вдоль некоторой плоскости пропорциональна расстоянию от этой плоскости),

вращение среды вокруг некоторой оси, как твердого тела (в отличие от потенциального движения аналогичной геометрии в этом случае скорость с удалением от оси линейно возрастает!).

2. ДИНАМИКА СПЛОШНОЙ СРЕДЫ

2.1. Силы и моменты в механике сплошной среды

Силы, распределенные по объему W, называются объемными или массовыми. Они обозначаются

и относятся к элементу массы Dm = rDW. Т.е. сила, действующая на элемент массы, равна
Dm =
rDW, следовательно, размерность
совпадает с размерностью ускорения. Примерами массовых сил могут служить гравитационные, электромагнитные, инерционные.

Силы, распределенные по поверхности S, называются поверхностными. Поверхностные силы будем обозначать вектором

и относить к элементу поверхности DS сплошной среды. Т.е.
имеет размерность давления. Такие силы возникают, например, на свободной поверхности среды, при взаимодействии среды с твердыми телами, а также внутри среды (внутренние поверхностные силы).

Внутренние поверхностные силы необходимо рассматривать при изучении движения отдельных частиц среды с учетом их механического влияния друг на друга. Так, например, происходит при относительном движении двух соседних соприкасающихся частиц. Это явление может наблюдаться в любом месте сплошной среды, причем для бесконечно малых частиц поверхности соприкосновения dS можно построить любым образом. Тогда и

, зависящее от такого выбора, можно определить по-разному в зависимости от dS, т.е. ориентации нормали этой площадки, поэтому такое взаимодействие обозначим вектором
S. В силу третьего закона Ньютона на одну из пары соприкасающихся частиц действует сила
SdS, на другую –
SdS. Однако если соприкосновения нет, т.е. если движение имеет разрыв каких-то своих характеристик, то последнее условие может нарушаться.