Смекни!
smekni.com

Теория суперструн (стр. 2 из 4)

В действительности D-браны динамичны, они могут флуктуировать и двигаться. Например, они взаимодействуют гравитационно. На диаграмме ниже можно видеть, как одна замкнутая струна (в нашем случае гравитон) взаимодействует с D2-браной. Особо стоит отметить тот факт, что при взаимодействии замкнутая струна становится открытой с обоими концами на D-бране.

Теория суперструн
Так что, струнная теория это нечто большее, чем просто теория струн.

3.Дополнительные измерения

Суперструны существуют в 10-мерном пространстве-времени, в то время как мы живем в 4-мерном. И если суперструны описывают нашу Вселенную, нам необходимо как-то связать между собой два эти пространства. Для этого свернем 6 измерений до очень маленького размера. Если при этом размер компактного измерения окажется порядка размера струн (

Теория суперструн), то мы из-за малости этого измерения попросту не сможем никак его напрямую увидеть. В конечном итоге мы получим наше (3+1)-мерное пространство, в котором каждой точке нашей 4-мерной Вселенной отвечает крохотное 6-мерное пространство. Очень схематично это представлено на картинке снизу:

Теория суперструн

На самом деле это довольно старая идея, которая восходит к работам Калуцы (Kaluza) и Клейна (Klein) 1920-х годов. При этом описанный выше механизм называют теорией Калуцы-Клейна или компактификацией. В самой работе Калуцы показано, что если мы возьмем теорию относительности в 5-мерном пространстве-времени, затем свернем одно измерение в окружность, то получим 4-мерное пространство-время с теорией относительности плюс электромагнетизм ! А так получается из-за того, что электромагнетизм это U(1) калибровочная теория. U(1) это группа вращений вокруг точки на плоскости. Механизм Калуцы-Клейна дает простую геометрическую интерпретацию этой окружности - это то самое свернутое пятое измерение. Хотя свернутые измерения и малы для прямого детектирования, тем не менее они могут иметь глубокий физический смысл. [Совершенно случайно просочившись в прессу, работа Калуцы и Клейна вызвала много разговоров по поводу пятого измерения.]

Как мы сможем узнать, есть ли на самом деле дополнительные измерения и как мы сможем их "почуствовать", имея ускорители с достаточно высокими энергиями ? Из квантовой механики известно, что если пространство периодично, то импульс квантован:

Теория суперструн, тогда как если пространство неограниченно, то спектр значений импульса непрерывен. Если уменьшать радиус компактификации (размер дополнительных измерений), то диапазон дозволенных значений импульса будет увеличиваться. Так получают башню состояний импульса - башню Калуцы Клейна.

Теория суперструн

А если радиус окружности взять очень большим ("декомпактифицируем" измерение), то диапазон возможных значений импульса будет довольно узким, но будет "почти-непрерывным". Такой спектр будет похож на спектр масс мира без компактификаций. Например, безмассовые в большем числе измерений состояния в меньшем числе измерений будут выглядеть именно как описанная выше башня состояний. Тогда должен наблюдаться "набор" частиц с массами, равноотстоящими друг от друга. Правда, для того, чтобы "увидеть" самые массивные частицы, необходимы ускорители, значительно лучшие тех, которыми мы сейчас располагаем.

У струн есть еще одно замечательное свойство - они могут "наматываться" на компактифицированное измерение, что приводит к появлению оборотных мод в спектре масс. Замкнутая струна может обернуться вокруг компактифицированного измерения целое число раз. Аналогично случаю Калуцы-Клейна они дают вклад в импульс как

Теория суперструн. Существенная разница состоит как раз в другой связи с радиусом компактификации
Теория суперструн. В этом случае для малых размеров дополнительных измерений оборотные моды становятся очень легкими !
Теория суперструн

Теперь нам необходимо перейти к нашему 4-мерному пространству. Для этого нам нужна 10-мерная суперструнная теория на 6-мерном компактном многообразии. Естественно, что при этом описанная выше картина становится более сложной. Проще всего положить, что все эти 6 измерений - 6 окружностей, таким образом все они представляют собой 6-мерный тор. Более того, такая схема позволяет сохранить суперсимметрию. Считается, что некоторая суперсимметрия существует и в нашем 4-мерном пространстве на энергетических масштабах порядка 1 ТэВ (именно на этих энергиях последнее время и ищут суперсимметрию на современных ускорителях). Для того, чтобы сохранить минимальную суперсимметрию, N=1 в 4-мерии, компактифицировать надо на специальном 6-мерном многообразии, именуемом многообразием Калаби-Йо (Calabi-Yau manifold).

Свойства многообразий Калаби-Йо могут иметь важные приложения к физике низких энергий - к частицам, которые мы наблюдаем, их массам и квантовым числам, а также к числу поколений частиц. Проблемой тут является то, что, вообще говоря, существует огромное множество многообразий Калаби-Йо, и мы не знаем, какое из них надо использовать. В этом смысле, имея фактически одну 10-мерную струнную теорию мы получаем, что 4-мерная теория становится совсем не единственно возможной, по крайней мере, на нашем (еще неполном) уровне понимания. "Струнные люди" (ученые, работающие в области струнных теорий) возлагают надежды на то, что обладая полной непертурбативной теорией струн (теорией, НЕ построенной на возмущениях, описанных несколько выше), мы сможем объяснить, как Вселенная перешла от 10-мерной физики, которая, возможно, имела место в течении высокоэнергетического периода сразу после Большого Взрыва, к 4-мерной, с которой мы имеем дело сейчас. [Иными словами, что мы найдем единственное многообразие Калаби-Йо.] Андрей Стромингер (Andrew Strominger) показал, что многообразия Калаби-Йо можно непрерывно связать друг с другом посредством конических преобразований (conifold transitions) и, таким образом, можно двигаться между различными многообразиями Калаби-Йо, меняя параметры теории. Но это предполагает возможность того, что различные 4-мерные теории, возникающие от различных многообразий Калаби-Йо, являются различными фазами одной теории.

4.Дуальность

Пять описанных выше суперструнных теорий оказываются очень различными с точки зрения слабо-связанной пертурбативной теории (теории возмущений, развитой выше). Но на самом деле, как выяснилось в последние несколько лет, они все связаны между собой различными струнными дуальностями. Назовем теории дуальными, если они описывают одну и ту же физику.

Первый тип дуальности, которую мы тут обсудим, - Т-дуальность (T-duality). Такой тип дуальности связывает теорию, компактифицированную на окружности радиуса

Теория суперструн, с теорией, компактифицированной на окружности радиуса
Теория суперструн. Таким образом, если в одной теории пространство свернуто в окружность малого радиуса, то в другой оно будет свернуто в окружность большого радиуса, но обе они будут описывать одну и ту же физику ! Суперструнные теории типа IIA и типа IIB связаны через Т-дуальность, SO(32) и E8 x E8 гетеротические теории также связаны через нее.

Еще одна дуальность, которую мы рассмотрим - S-дуальность. Проще говоря, эта дуальность связывает предел сильной связи одной теории с пределом слабой связи другой теории. (Отметим, что при этом слабо связанные описания обоих теорий могут очень сильно различаться.) Например, SO(32) Гетеротическая струнная теория и теория Типа I S-дуальны в 10-мерии. Это означает, что в пределе сильной связи SO(32) Гетеротическая теория переходит в теорию Типа I в пределе слабой связи и наоборот. Найти же свидетельства дуальности между сильным и слабым пределами можно, сравнив спектры легких состояний в каждой из картин и обнаружив, что они согласуются между собой. Например, в струнной теории Типа I есть D-струна, которая тяжелая при слабой связи и легкая при сильной. Эта D-струна переносит те же легкие поля, что и мировой лист SO(32) Гетеротической струны, так что когда теория Типа I очень сильно связана, D-струна становится очень легкой и мы попросту увидим, что описание становится таким же, как и через слабо связанную Гетеротическую струну. Другой S-дуальностью в 10-мерии является самодуальность IIB струн: сильно связанный предел IIB струны это попросту другая IIB теория, но слабо связанная. В IIB теории тоже есть D-струна (правда, более суперсимметричная, нежели D-струны теории Типа I, так что и физика тут другая), которая становится легкой при сильной связи, но эта D-струна также является другой фундаментальной струной теории Типа IIB.

Теория суперструн

Дуальности между различными струнными теориями являются свидетельством того, что все они попросту различные пределы одной теории. Каждый из пределов имеет свою применимость, и различные пределы разных описаний пересекаются.

5.М-теория

При низких энергиях М-теория описывается теорией, называемой 11-мерной супергравитацией. В этой теории есть мембрана и пятьбрана в качестве солитонов, но нет струн. Как же нам можно тут получить уже полюбившиеся нам струны ? Можно компактифицировать 11-мерную М-теорию на окружности малого радиуса для получения 10-мерной теории. Тогда если наша мембрана имела топологию тора, то сворачивая одну из этих окружностей, мы получим замкнутую струну ! В пределе, когда радиус очень мал, мы получаем суперструну Типа IIA.