Смекни!
smekni.com

Рост аксона (стр. 2 из 2)

Рис. 4. Конусы роста периферических нейронов используют клетки-ориентиры для навигации в конечностях кузнечика. (А) В нормальном эмбрионе аксоны Ti1 нейрона встречают на своем пути в центральную нервную систему серию клеток-ориентиров: клетки Fl, F2 и две клетки СТ1. (В) Если СТ1 клетку убить на ранней стадии развития, нейрон Ti1 образует несколько аксональных веточек из точки, где находится F2, и конусы роста направляются в неправильном направлении.
Навигация по клеткам-ориентирам (guidepost cells)

Когда дистанция от нейрона до его цели составляет больше чем несколько сотен микрон, его путь обозначен специальными промежуточными целями. Например, конус роста, идущий от сенсорной клетки конечностей у развивающегося кузнечика, делает несколько резких поворотов на своем пути в ЦНС (рис. 4). Эти повороты происходят в тот момент, когда конус роста касается так называемых клеток-ориентиров (guidepost cells). Такое поведение указывает на наличие взаимодействия с клетками-ориентирами, ответственными за перенаправление конусов роста. Этими клетками чаше всего являются незрелые нейроны. Эти взаимодействия можно продемонстрировать при помощи удаления клеток-ориентиров лучом лазера до того, как их достигнет конус роста. В этом случае не происходит соответствующего изменения в траектории движения конуса роста.

Синаптические взаимодействия с клетками-ориентирами

В некоторых случаях аксоны образуют кратковременные синаптические контакты с клетками-ориентирами во время развития. В развивающемся гиппокампе, например, аксоны из энторинальной коры сначала образуют синапсы с временной популяцией нейронов, клетками Кахаля—Ретциуса. Позднее, по мере появления гранулярных клеток и их созревания, энторинальные аксоны покидают клетки Кахаля—Ретциуса и образуют связи с дендритами гранулярных клеток. После этого клетки Кахаля—Ретциуса исчезают. В другом примере аксоны нейронов из ядра ЛКТ в зрительной системе млекопитающих достигают развивающуюся корковую пластинку раньше, чем образуются их синаптические мишени — пирамидные клетки слоя 4. Поэтому аксоны ядра ЛКТ образуют синапсы с нейронами подпластинки , которые образуются в раннем эмбриогенезе. Нейроны подпластинки лежат под развивающейся корковой пластинкой, и им суждено исчезнуть вскоре после рождения. Через нескольких недель, когда пирамидные клетки слоя 4 достигают своего месторасположения в коре, аксоны из ЛКТ разрывают свои связи с нейронами подпластинки и направляются в кору, чтобы образовать связи, характерные для взрослого животного. Если нейроны подпластинки удалить в раннем периоде развития местной аппликацией нейротоксинов, аксоны ядра ЛКТ прорастают за пределы развивающейся зрительной коры и не могут образовать синаптических связей со своими мишенями.

Механизмы управления аксоном

Молекулы, которые управляют конусом роста, действуют четырьмя основными путями: как аттрактанты или репелленты, на короткой или длинной дистанции.

Некоторые коротко-дистантные сигналы управления аксоном обеспечиваются посредством контакта конуса роста с клеточной поверхностью или с белками адгезии внеклеточного матрикса, которые были описаны ранее в этой главе как промоторы роста аксона. Молекулы адгезии и их рецепторы могут также играть ведущую роль в связывании отдельных аксонов в пучки (так называемая фасцикуляция). Характер роста аксона и иннервация клетки-мишени in vivo и в культуре клеток нарушалась при изменении активности специфических молекул адгезии или их рецепторов, в генетических экспериментах с выключением определенных генов, а также при добавлении определенных типов антител.

Другое влияние молекул внеклеточного матрикса на растущий аксон показано в экспериментах на отдельных клетках, выделенных из ЦНС пиявки и растущих в культуре. Субстраты, которые содержат тенасцин или ламиннн, способствуют не только быстрому образованию нервных отростков у нейронов пиявки, но также влияют на характер роста этих отростков и на распределение кальциевых каналов в клетке. Различные нейроны по-разному отвечают на определенные молекулы внеклеточного матрикса. Таким образом, возникает экономная схема, когда несколько молекул адгезии могут обеспечивать разнообразные эффекты.


Рис. 5. Молекулы внеклеточного матрикса определяют паттерн роста нервных отростков в культуре нейронов пиявки. Одиночный нейрон выращен в клеточной культуре на субстрате определенного паттерна. С левой стороны край чашки был покрыт конканавалином A (Con A), а с правой стороны экстрактом, содержащим внеклеточный матрикс (ЕСМ) из глиальных капсул ганглиев пиявки.

Все молекулы адгезии либо способствуют росту, либо нет. Управление ростом аксона на большом расстоянии включает в себя движение аксона вдоль градиента концентрации растворимого фактора.

Навигация конусов роста в спинном мозге

Хороший пример разнообразия механизмов и молекул, которые используют конусы роста для навигации к своим клеткам-мишеням, представляют аксоны комиссуральных интернейронов спинного мозга позвоночных В раннем периоде развития комиссуралъные интернейроны, которые лежат в дорзальной части спинного мозга, «выпускают» аксоны, которые начинают расти в вентральном направлении, пересекая среднюю линию, и затем растут вдоль спинного мозга по направлению к своим синаптическим мишеням (рис. 6) .

Аксоны комиссуральных нейронов первоначально привлекаются к вентральной средней линии белком нетрин-1, растворимым хемоаттрактантом, образуемым специальными клетками базальной пластинки, лежащими вдоль средней линии спинного мозга (рис. 23.24А)111). Нетрин-1 взаимодействует с рецептором, экспрессируемым комиссуральными нейронами, называемым DCC (который уже упоминался ранее из-за своего взаимодействия с молекулами клеточной адгезии. Существование растворимого фактора, образующегося в базальной пластинке, который способен привлекать (attract) аксоны комиссуральных нейронов, было впервые показано при культивировании кусочков дорзальной части спинного мозга изолированно, либо вместе с кусочками базальной пластинки (рис. 7). Аксоны комиссуральных нейронов растут четко по направлению к базальной пластинке, даже если эксплантаты находятся друг от друга на расстоянии нескольких сотен микрон. Эта дистанция слишком велика для того, чтобы ее прошел филоподий конуса роста и требует растворимого фактора. Такой фактор, нетрин-1, входящий в семейство секреторных белков, характеризуется сходством доменов с N-концевыми доменами 7 цепи ламинина-1 (рис. 7А). Гомологи нетрина также играют роль в росте аксонов у дрозофилы и С. elegans.

Далее аксоны комиссурального нейрона пересекают вентральную среднюю линию, что они делают только однажды, таким образом оставаясь на контралатеральной стороне (рис. 7В, С). Это пересечение облегчается взаимодействиями между двумя адгезивными молекулами клеточной поверхности: TAG-1, которая экспрессируется на поверхности аксона спаечного нейрона, и NrCAM, экспрессируемого на клетках базальной пластинки. После пересечения средней линии экспрессия TAG-1 в аксонах ингибируется сигналами от клеток базальной пластинки, под действием которых в аксонах начинает синтезироваться протеин, называемый robo. Robo представляет собой рецептор для другого белка, называемого slit, который высвобождается клетками базальной пластинки. Взаимодействие между slit и robo отталкивает конусы роста комиссуральных интернейронов. Потеря аттракции к TAG-1—NrCAM контакту и приобретение коротко-дистантного отталкивающего взаимодействия slit-robo предупреждают возможное повторное пересечение аксоном средней линии.


Рис. 8. Роль нетрина и его рецепторов в аттракции и отталкивании на большом расстоянии. (А) N-концевая аминокислотная часть секреторного белка нетрина состоит из доменов VI и V, которые гомологичны доменам аминокислотного конца 7 цепи ламинина. Домен V содержит три ECG-повтора. С-концевой домен этой цепи не имеет гомологии с ламинином. (В) Рецепторы нетрина имеют внеклеточный домен, однократно пересекающий мембрану, и внутриклеточный домен. Внеклеточный домен семейства DCC рецепторов нетрина имеет четыре иммуноглобулиновых домена (Ig) и шесть повторов фибронектина III (FN III). DCC и их гомологи также могут играть роль молекул адгезии. Семейство рецепторов к нетрину UNC-5 имеет два иммуноглобулиновых домена и два домена, гомологичных тромбоспондину 1-го типа (TSP I), которые расположены внеклеточно, а также длинную цитоплазматическую последовательность. (С) Микрофотографии кусочков дорзального спинного мозга эмбрионов крысы (сверху на каждой из панелей), культивированных вместе с кусочками ткани базальнои пластинки (слева), вместе с CDS клетками, секрета рующи ми рекомбинантный нетрин 1 (в центре), и с контрольными COS клетками (справа). Нижняя пластинка и нетрин 1 оба способны вызывать значительный и направленный рост пучков комиссуральных аксонов из дорзаль ной области спинного мозга.

Slit и нетрин-1 также диффундируют из базальной пластинки для отталкивания конусов роста мотонейронов. Такие отталкивающие взаимодействия направляют аксоны мотонейронов прочь от спинного мозга в направлении периферии (рис.6D)


Литература:

1. McConnell, S. K. 1995. Constructing the cerebral cortex: Neurogenesis and fate determination. Neuron 15: 761-768.

2. Mueller, В. К. 1999. Growth cone guidance: First steps towards a deeper understanding. Annu. Rev. Neurosci. 22: 351-388.

3. OLeary, D. D., and Wilkinson, D. G. 1999. Eph receptors and heparins in neural development. Curr. Opin. Neurobiol. 9: 65-73.

4. Oppenheim, R.W. 1991. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14: 453-501.