Смекни!
smekni.com

Концепция современного естествознания (стр. 3 из 4)

Температура газа должна определятся средней кинетической энергией его молекул.

Для определения температуры нужно найти величину, которая бы обладала свойствами температуры – быть одинаковой у всех тел, находящихся в состоянии теплового равновесия. Физик Больцман установил, что этим свойствам обладает средне кинетическая энергия поступательного движения молекул:

Еср.=(3/2)kT,

где k=1,38*10-23(Дж/К). значит температура мера средней кинетической энергии поступательного движения идеального газа.

Если средне кинетическая энергия поступательного движения молекулы равна 7,87*10Е-21 Дж, то температура идеального газа =0,26·10-22

Когда возникает металлическая связь? Дайте представление о теории металлов (классической и квантовой), полупроводниках, диэлектриках, изоляторах

Твердые тела, как и жидкость, относят к конденсированным средам. Внутренняя энергия твердого тела состоит из кинетической энергии колебаний и потенциальной энергии связи.

Металлическая связь возникает при сближении атомов на расстоянии, меньшее размеров облака внешних электронов. Согласно принципу Паули, при такой конфигурации растет энергия внешних электронов, и ядра соседей начинают притягивать эти внешние электроны, размывая электронные облака. И внешние электроны, наконец-то, равномерно распределяются по металлу, образуя электронный газ.

Классическая теория металлов разработана в 1900 году ученым П.Друде на основе представлений о носителях тока в металлах. По классической теории металлов, электроны ведут себя как атомы идеального газа. Но в отличии лот молекул идеального газа электроны проводимости сталкиваются не между собой, а с ионами, образующими кристаллическую решетку. Столкновения устанавливают равновесия между этими двумя подсистемами. Согласно кинетической теории, средняя скорость теплового движения электронов равна 105 м/с. Сопротивление металлов объяснялось соударением электронов с ионами, и плотность тока прямо пропорциональна напряженности поля (закон Ома) с коэффициентом проводимости. К концу свободного пробега электрон приобретает дополнительную кинетическую энергию, которую теряет при столкновении с ионом. Эта энергия переходит во внутреннюю и способствует повышению температуры. Количество этой энергии пропорциональна квадрату напряженности поля.

Но классическая теория вызывала противоречия, которые были сняты в квантовой теории металлов. Первым успехом явилось объяснение Эйнштейном в 1906 году малой теплоемкости твердых тел при низких температурах. Теплоемкость твердых тел при малой температуре меняется пропорционально кубу температур. Грюнайзен вывел новое уравнение состояния твердых тел и получил из него зависимость между линейным коэффициентом расширения твердого тела и его сжимаемостью. Внешние электроны обладают коллективными свойствами, и их кинетическая энергия равна (5-10)Эв, вместо 3*10-2Эв. Энергетической состояние любого электрона определяется четырьмя квантовыми числами. Невозбужденное состояние соответствует минимуму свободной энергии. Каждый энергетический уровень при сближении атомов расщепляется, образуя металлическую зону плотно расположенных уровней. Эти зоны разрешенных уровней , разделены промежутками – зонами запрещенных уровней.

Деление веществ по проводимости тока:

Проводники

Полупроводники – они характеризуются тем, что электроны полностью занимают валентную зону. Поэтому для увеличения энергии электрона ему нужно сообщить энергию достаточную для преодоления запрещенной зоны. Поэтому электрические свойства кристалла определяется шириной запрещенной зоны. Полупроводники стали активно выходить в технику в 20 г. 20 века. Появились выпрямители и фотоэлементы. Собственная проводимость возникает в результате переходов электронов с верхних уровней в зону проводимости. Освобождаемое место называется дыркой. В отсутствии поля они движутся хаотически. При включении поля происходит процесс заряда в кристалле, который накладывается на хаотическое движение. Каждой температуре соответствует определенная концентрация электронов и дырок. Примесная проводимость полупроводников возникает, если некоторые атомы в узлах кристаллической решетки заменить на другие, валентность которых отличает на единицу.

Диэлектрики – диэлектрики или изоляторы имеют большую ширину запрещенной зоны, и тепловой энергии уже не достаточно для перевода электронов через нее. Сегнетоэлектрики – группа кристаллических диэлектриков, которая способна к самопроизвольной поляризации в отсутствии внешнего электрического поля. Для каждого сегнетоэлектрика существует область, когда эти свойства проявляются. Поляризация в них возникает при механической нагрузке в степени, пропорциональной степени упругой деформации. Кристаллическая решетка может быть представлена в виде нескольких простых решеток, вставленных друг в друга. Если у кристалла нет центра симметрии, при деформации происходит относительное перемещение простых решеток и возникает поляризация.

Сейчас в природе существуют конденсированные среды, для которых характерно неупорядоченное расположение атомов. Это стекло, сталь, сплавы. Свобода расположения атомов в пространстве изменяет электрические, магнитные, сверхпроводящие свойства этих тел.

Фундаментальные типы взаимодействий в физике. Почему они так называются? Какие законы сохранения фундаментальны для всего естествознания и почему?

Мир не представляется набором тел, он подвижен, активен и все, что заполняет мир, подвержено движению и изменению. Классическая механика признала, что существует движение и без приложенной силы, и только отклонение от прямолинейности равномерности требует силы. Ньютон установил, что сила вызывает ускорение, и получил простую формулу, отражающую эту связь. Механика Ньютона была признана, изменилось описание движений, но происхождение сил в ней не обсуждались.

Существует 4 типа взаимодействия в природе.

Гравитационное: гравитация стала первым исследуемым взаимодействием. Сначала ее связывали только с Землей, считали, что тяжелое стремиться только вниз, а легкое – вверх. По закону всемирного тяготения Ньютона, гравитационные силы прямопропорциональны произведению тяготеющих масс и обратно пропорциональны квадрату расстояния между их центрами. Основное свойство гравитационного взаимодействия – его универсальность. Гравитационные силы действуют по закону обратных квадратов расстояния между массами тел и всегда направлены на притяжение. Гравитация универсальна, все тела подвержены гравитации. Величина гравитационного взаимодействия мала, а между макроскопическими телами она еле заметно. Гравитация – это проявление искривления пространства – времени.

Электромагнитное : обусловлено электрическими и магнитными зарядами. Силы взаимодействия между зарядами зависят от положения и движения зарядов. Если два заряда не подвижны и сосредоточенны в точках на расстоянии, то взаимодействие между ними электрической и определяется законом Кулона. Электрический заряд всегда связан с элементарными частицами. Заряд протона считается – положительным, нейтрона – отрицательным. Магнитные силы порождаются электрическими токами. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они отдают энергию в виде света, радиоволн или рентгеновских лучей. Видимый свет является электромагнитным излучением определенного диапазона частот. Электромагнитное взаимодействие определяет структуру и поведение атомов, удерживают атомы от распада, отвечают за связями между молекулами. Электромагнитные силы действуют по закону обратных квадратов расстояния между электрическими зарядами е1 и е2 , сила электрического взаимодействия направлена вдоль прямой, соединяющей заряды и зависит от их знаков.

Слабое ядерное: сильные и слабые взаимодействия короткодействующие и проявляются только в пределах размеров атомного ядра, т. е в областях порядка 10-14 м. слабое ядерное взаимодействие ответственно за многие процессы. Например, превращение нейтронов в протоны. Эффективность слабого взаимодействия можно охарактеризовать универсальной постоянной связи g(W), определяющей скорость протекания процессов типа распада нейтрона. Это взаимодействие вызывает множество превращений. Сверхновые звезды – пример слабого взаимодействия.

Сильное ядерное: оно препятствует распаду атомных ядер, не будь его, ядра распались бы из-за сил электрического отталкивания протонов. С этим типом взаимодействия связанны энергия, выделяемая солнцем и звездами, превращение в ядерных реакторах и освобождение энергии. Сильное взаимодействие не удовлетворяет закону обратной пропорциональности, как гравитационное или электромагнитное – оно очень резко спадает за пределами эффективной области радиусом около 10-15 м. внутри протонов и нейтронов тоже существует сильное взаимодействие между теми элементарными частицами, их которой они состоят, следовательно, взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий. Сильные ядерные взаимодействия связывают между собой кварки, входящие в состав протонов и нейтронов и других частиц, которые имеют сейчас адронами. Оно ответственно за удержание протонов и нейтронов в ядре.

Перечисленные виды взаимодействий имеют разную природу. Самым сильным является короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое на 14 порядков, гравитационное самое слабое.

Идея сохранения энергии можно перейти от механических движений к тепловым далее – к микроструктуре вещества. Таким образом, Вселенная это совокупность частиц, которые могут взаимодействовать только 4 способами, и подчиняться небольшому числу фундаментальных законов