Лимфоидные клетки (стр. 1 из 2)

Реферат

по биологии

«Лимфоидные клетки»


Ежесуточно в первичных лимфоидных органах — тимусе и постнатальном костном мозге — образуется значительное количество лимфоцитов. Часть этих клеток мигрирует из кровотока во вторичные лимфоидные ткани — селезенку, лимфатические узлы и лимфоидные образования слизистых оболочек. В организме взрослого человека содержится примерно 1012 лимфоидных клеток и лимфоидная ткань в целом составляет приблизительно 2% обшей массы тела. При этом на лимфоидные клетки приходится примерно 20% циркулирующих с кровотоком лейкоцитов. Многие зрелые лимфоидные клетки относятся к долгоживущим и могут многие годы существовать в качестве клеток иммунологической памяти.

Лимфоциты морфологически разнообразны

В обычном мазке крови лимфоциты различаются как по размерам, так и по морфологии. Варьирует соотношение величина ядра: величина цитоплазмы, а также форма самого ядра. В цитоплазме некоторых лимфоцитов могут содержаться азурофильные гранулы.

При световой микроскопии мазков крови, окрашенных, например, гематологическим красителем Гимза, можно обнаружить два морфологически различных типа циркулирующих лимфоцитов: первый — относительно мелкие клетки, в типичном случае лишенные гранул, с высоким соотношением Я:Ц — и второй — более крупные клетки с меньшим соотношением Я.Ц, содержащие в цитоплазме гранулы и известные как большие гранулярные лимфоциты.

Покоящиеся Т-клетки крови

Большая часть их экспрессирует бв-Ф-клеточные рецепторы и может иметь один из двух описанных выше типов морфологии. Большинство хелперных Т-клеток и часть цитотоксических Т-лимфоцитов относятся к малым лимфоцитам, лишенным гранул и имеющим высокое соотношение Я:Ц. Кроме того, в их цитоплазме присутствуют особая структура, названная тельцем Голла, — скопление первичных лизосом возле липидной капли. Тельце Голла легко выявить при электронной микроскопии или цитохимически, методом определения лизосомных ферментов. Менее 5% Тх-клеток и примерно половина Тц имеют другой тип морфологии, характерный для БГЛ, с рассеянными по цитоплазме первичными лизосомами и хорошо развитым комплексом Гольджи. Интересно, что у мыши нет цитотоксических Т-клеток, сходных по морфологии с БГЛ.

Признаки больших гранулярных лимфоцитов свойственны также еще одной субпопуляции Т-лимфоцитов, а именно Т-клеткам с гд-рецепторами. В лимфоидных тканях эти клетки имеют дендритную морфологию; при культивировании in vitro они способны прикрепляться к подложке, принимая в результате разнообразную форму.

Неактивированные В-клетки крови. Эти клетки не содержат тельца Голла и морфологически не сходны с большими гранулярными лимфоцитами; их цитоплазма в основном заполнена рассеянными монорибосомами. В кровотоке иногда можно наблюдать активированные В-клетки с развитым шероховатым эндоплазматиче-ским ретикулумом.

НК-клетки Нормальные киллерные клетки, подобно гд-Ф-клеткам и одной из субпопуляций Тц, имеют морфологию БГЛ. Однако при этом в их цитоплазме больше азурофильных гранул, чем у гранулярных Т-клеток.

Лимфоциты экспрессируют особые у каждой субпопуляции поверхностные маркеры

На поверхности лимфоцитов присутствует множество разнообразных молекул, которые могут служить метками различных субпопуляций. Значительная часть этих клеточных маркеров в настоящее время легко идентифицируется с помощью специфических моноклональных антител. Разработана систематизированная номенклатура маркерных молекул; в ней группы моноклональных антител, каждая из которых специфически связывается с определенной маркерной молекулой, обозначены символом CD. За основу CD-номенклатуры принята специфичность прежде всего мышиных моноклональных антител к лейкоцитарным антигенам человека. В создании этой классификации участвуют многие специализированные лаборатории разных стран. Для ее обсуждения проведена серия международных рабочих встреч, на которых удалось определить характерные наборы образцов моноклональных антител, связывающихся с различными популяциями лейкоцитов, а также молекулярные массы выявляемых при этом маркеров. Моноклональные антитела совпадающей специфичности связывания объединяют в одну группу, присваивая ей номер в системе CD. Однако в последнее время принято таким образом обозначать не группы антител, а маркерные молекулы, распознаваемые данными антителами

В дальнейшем молекулярные маркеры стали классифицировать в соответствии с информацией, которую они несут об экспрессируюших их клетках, например:

• популяционные маркеры, которые служат характерным признаком данного цитопоэтического ряда, или линии; пример — маркер CD3, выявляемый только на Т-клетках;

• дифференцировочные маркеры, экспрессируемые временно, в процессе созревания; пример — маркер CD1, который присутствует на развивающихся тимоцитах, но не на зрелых Т-клетках;

• маркеры активации, такие как CD25 — низкоаффинный Т-клеточный рецептор для фактора роста, экспрессируемый только на Т-клетках, активированных антигеном.

Иногда такой подход к классификации маркеров весьма полезен, однако не всегда он возможен. У некоторых популяций клеток маркер активации и маркер дифференцировки — это одна и та же молекула. Например, CD 10, присутствующий на незрелых В-клетках, исчезает при созревании, но появляется вновь при активации.

Кроме того, маркеры активации могут постоянно присутствовать на клетках в низкой концентрации, но в более высокой — после активации. Так, под действием ИФу возрастает экспрессия молекул главного комплекса гистосовместимости класса II на моноцитах.

Клеточные маркеры образуют несколько семейств

Компоненты клеточной поверхности относятся к различным семействам, гены которых произошли, вероятно, от нескольких предковых. Маркерные молекулы из разных семейств различаются по структуре и образуют следующие основные группы:

• суперсемейство иммуноглобулинов, включающее молекулы, близкие по строению к антителам; к нему относятся CD2, CD3, CD4, CD8, CD28, молекулы МНС классов I и II, а также многие другие;

• семейство интегринов — гетеродимерных молекул, образованных а- и в-цепями; существует несколько подсемейств интегринов; все члены одного подсемейства имеют общую в-цепь, но разные, уникальные в каждом случае, б-цепи; в одном из подсемейств ф2 -ин-тегрины) в-цепь представляет собой маркер CDI8. В комбинации с CDI la, CDI lb, CDI Ic или aD он образует соответственно лимфоци-тарные функциональные антигены LFA-1, Мас-1 и с 150, 95 и молекулы клеточной поверхности быв9 , часто выявляемые на лейкоцитах. У второго подсемейства в-цепь представляет собой маркер CD29; в сочетании с различными б-цепями он образует маркеры поздней стадии активации;

• селектины, экспрессируемые на лейкоцитах или на активированных клетках эндотелия. Они обладают лектиноподобной специфичностью в отношении Сахаров в составе высокогликозилированных мембранных гликопротеинов; к селектинам относится, например, CD43;

• протеогликаны, имеющие ряд глюкозаминогликановых участков связывания; пример — хондроитинсульфат.

Другие семейства клеточных маркеров — это суперсемейство рецепторов для фактора некроза опухолей и фактора роста нервов, суперсемейство лектинов С-типа, включающее, например, CD23, а также суперсемейство многодоменных трансмембранных рецепторных белков, в которое входит рецептор для ИЛ-6.

Следует подчеркнуть, что маркеры, экспрессируемые лимфоцитами, можно обнаружить и на клетках иных линий. Так, CD44 часто выявляется на клетках эпителия. Молекулы клеточной поверхности можно выявить с помощью флуоресцирующих антител, используемых в качестве зондов. На этом подходе основан метод проточной иммунофлуоресцентной цитометрии, позволяющей сортировать и подсчитывать клетки в зависимости от их размеров и параметров флуоресценции. С помощью этого метода удается проводить детальную сортировку популяций лимфоидных клеток.

Т-клетки

Т-клетки различаются по своим антигенраспознающим рецепторам

Маркером, характеризующим линию Т-клеток, служит Т-клеточный рецептор для антигена. Имеется два различных типа ТкР, и тот и другой — гетеродимеры из двух соединенных ди-сульфидными связями полипептидных цепей. ТкР первого типа образован цепями б и в, второго типа, сходный по структуре — цепями г и д. Оба рецептора ассоциированы на клеточной поверхности с пятью полипептидами СОЗ-комплекса, образуя вместе с ним рецепторный комплекс Т-клетки. Примерно 90—95% Т-клеток в крови представляют собой бв-Ф-клетки, остальные 5—10% — гд-Ф-клетки.

бв-Ф-клетки различаются в свою очередь по экспрессии CD4 или CD8

бв-Ф-клетки подразделяются на две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном «помогают» в осуществлении иммунного ответа или «индуцируют» его, клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью. Т-клетки CD4+ распознают антигены, к которым они специфичны, в ассоциации с молекулами МНС класса II, тогда как Т-клетки CD8+ способны узнавать антигены в ассоциации с молекулами МНС класса 1. Таким образом, возможность взаимодействия Т-клетки с клеткой другого типа зависит от присутствия на первой маркера CD4 или CD8. Небольшая часть бв-Ф-клеток не экс-прессирует ни CD4, ни CD8. Подобным же образом «дважды отрицательны» большинство циркулирующих гд-Ф-клеток, хотя некоторые из них все же несут CD8. Напротив, большая часть гд-Ф-клеток в тканях экспрессирует этот маркер.

бв-Ф-клетки CD4+ и CD8+ подразделяются на функционально различные субпопуляции

Как отмечено выше, примерно 95% Т-клеток CD4+ и 50% Т-клеток CD8+ морфологически представляют собой малые негранулярные лимфоциты. Эти популяции можно дифференцировать дальше по фенотипической экспрессии CD28 и CTLA-4 на функционально различные субпопуляции. Экспрессируемый Т-клетками CD4+ маркер CD28 обеспечивает передачу кос-тимулирующего сигнала активации при распознавании антигена. Лигандами CD28 служат молекулы В7-1 и В7-2 на АПК. Гомологичную CD28 молекулу CTLA-4 Т-клетки CD4+ начинают экспрессировать после активации. CTLA-4 связывается с теми же лигандами, что и CD28, тем самым ограничивая активацию. Кроме того, бв-Ф-клетки экспрессируют различные изоформы общего лейкоцитарного антигена, CD45. Считается, что CD45RO, а не CD45RA, связан с клеточной активацией. Для выделения функционально различных субпопуляций бв-Ф-клеток используют также другие критерии, в частности экспрессию клеточных маркеров нормальных киллерных клеток, выявляемых на 5—10% циркулирующих Т-клеток. Эти клетки образуют ИЛ-4, но не ИЛ-2, и дают слабый пролиферативный ответ на антигены и митогены.