Смекни!
smekni.com

Маслянокислые бактерии как продуценты кислот (стр. 2 из 8)

Физиологический смысл дополнительных ферментативных этапов у C. acetobutyricum, ведущих к накоплению в среде н-бутанола, этанола и ацетона, заключается в образовании конечных продуктов нейтрального характера.

Первоначально нейтральный рН среды вследствие накопления масляной и уксусной кислот быстро падает. Некоторые клостридии выработали механизм борьбы с нарастающей кислотностью, который начинает функционировать при низком рН среды и приводит к появлению перечисленных выше нейтральных продуктов. Одновременно происходит понижение общей кислотности среды, что также свидетельствует об активном противодействии этих бактерий неблагоприятным условиям.

Изучение физиологии группы клостридий, осуществляющих ацетонобутиловое брожение, привело к открытию В.Н. Шапошниковым (1884-1968) явления двухфазности этого процесса, которое позднее было обнаружено в большинстве типов брожений, характеризующихся сложным набором конечных продуктов. В основе явления двухфазности лежит тесная связь между конструктивными и энергетическими процессами. Вначале, когда имеет место активный рост культуры, сопровождающийся интенсивными биосинтетическими процессами, происходит значительный отток образующегося при брожении восстановителя для конструктивных целей. Это сопровождается преобладающим синтезом более окисленных конечных продуктов брожения (1 фаза). При затухании роста и переходе культуры в стационарное состояние уменьшается потребность в восстановителе для конструктивных целей. Последнее приводит к большему его использованию в энергетических процессах и, следовательно, к образованию более восстановленных конечных продуктов брожения (2 фаза). Таким образом, масштабы конструктивного метаболизма определяют характер и направление энергетических процессов. Метаболизирование части ацетоацетил-КоА через ацетоуксусную кислоту в ацетон приводит к определенной потере потенциальных акцепторов водорода, которые могли бы на пути к образованию масляной кислоты или н- бутанола присоединить соответствующее количество водорода с НАД-Н2.Однако этот путь является более коротким путем образования нейтральных продуктов, что, вероятно, для бактерий в определенных условиях выгодно. Кроме того, попыткой как- то компенсировать этот недостаток можно объяснить возникновение у некоторых видов клостридиев способности ферментативно восстанавливать ацетон ив изопропанол с использованием водорода с НАД-Н2 (Гусев, Минеева,2001).

1.2 Бактерии, участвующие в маслянокислом брожении

К клостридиям относят большое количество видов бактерий, число которых постоянно возрастает. Это один из самых крупных родов среди эубактерий. Принадлежность к роду определяется на основании только трех признаков:1)способности образовывать эндоспоры 2) облигатно анаэробного характера энергетического метаболизма 3) неспособности осуществлять диссимиляционное восстановление сульфата. Отсюда понятно, что эта группа эубактерий чрезвычайно гетерогенна, о чем, в частности, свидетельствует интервал значений ГЦ - оснований ДНК, молярное содержание которых с учетом описанных новых видов занимает область от 21 до 57%.

Из этого также можно сделать вывод, что организмы, объединенные в род Clostridium, нельзя рассматривать как эволюционно однотипные. Последующая характеристика их метаболических особенностей дает достаточно четкое представление об этом. Изучение эубактерий, относимых к клостридиям, наоборот, указывает на раннее расхождение видов рода в процессе эволюции. За исключением C. coccoides, вегетативные клетки бактерий из рода Clostridium имеют форму прямых или слегка изогнутых палочек с закругленными концами. Большинство видов грамположительные, подвижные. Движение осуществляется с помощью перитрихиально расположенных жгутиков. По мере старения в процессе цикла развития клетки теряют подвижность, накапливают гранулезу (запасное вещество типа крахмала) и переходят к спорообразованию. Образующиеся споры овальной или сферической формы. Диаметр их, как правило, превышает диаметр вегетативной клетки, поэтому, если, формирующаяся спора расположена в центре клетки, последние меняют форму, становясь веретеновидными; если же споры образуются у одного из клеточных концов, клетки приобретают форму барабанных палочек.

Клостридии - облигатные анаэробы. Однако спектр их чувствительности к молекулярному кислороду достаточно широк, что связано с обнаружением в клетках большинства клостридиев супероксиддисмутазы и с другими приспособлениями на уровне клеточных популяций, помогающими нейтрализовать токсические эффекты О2 и его производных. Именно при работе с клостридиями Л. Пастер в 1961г. открыл форму жизни без кислорода (Емцев, Мишустин, 2006).

В зависимости от вида сбраживаемого субстрата выделяют несколько физиологических групп клостридиев: сахаролитические клостридии, использующие в качестве субстратов брожения вещества углеводной природы (моносахара, крахмал, клетчатка); протеолитические клостридии, субстратами брожения которых являются белки, пептиды, аминокислоты пуринолитические клостридии, специфически приспособленные к сбраживанию гетероциклических соединений (пурины и пиримидины). Среди них есть виды, обладающие довольно широкими возможностями (субстратами брожения служат как углеводы, так и белки), и узкоспециализированные виды, способные использовать в качестве источника энергии и углерода какое-либо или очень небольшое число соединений.

Субстратом брожения сахаролитических клостридий является такие моносахара, как глюкоза, фруктоза, ксилоза и др. Некоторые виды могут использовать крахмал, целлюлозу, пектин, хитин, предварительно гидролизуемые соответствующими экзоферментами. Типичными представителями сахаролитических клостридий, осуществляющих классическое маслянокислое брожение, являются C. butyricum и C. pasteurianum.

Таблица 1. Основные продукты брожения некоторых сахаролитических клостридий, не образующих масляной кислоты.

Организм Основные продукты брожения
C. sphenoides , C. glycolicum этанол, уксусная кислота, СО2, Н2
C. cellobioparum
этанол, уксусная, муравьиная, молочная кислоты; СО2, Н2
C. clostridioforme
этанол, муравьиная, уксусная, молочная кислоты; СО2, Н2
C. oroticum этанол; уксусная, молочная, муравьиная кислоты; СО2
C. coccoides
янтарная, уксусная кислоты
Cdurum этанол, пропанол; муравьиная, уксусная, молочная кислоты
Cnexile
этанол; муравьиная, уксусная, молочная, янтарная кислоты; Н2
С. quercicolum уксусная, пропионовая кислоты, Н2
C. ramosum
муравьиная, уксусная, молочная, янтарная кислоты
C. aceticum, C. thermaceticum, C. formicaceticum, C. spiroforme уксусная кислота

К протеолитическим относятся клостридии, имеющие активные протеолитические ферменты и поэтому способные использовать в качестве субстратов белки и пептиды, гидролизуя их до аминокислот и подвергая затем последние сбраживанию. В эту группу входят C. putrificum, C. histoliticum, C. sporogenes и другие сапрофитные виды. Близки к этим видам и некоторые патогенные формы: C. botulinum – продуцент ботулина – экзотоксина, являющегося одним из самых сильных биологических ядов; C. tetani – столбнячная палочка, образующая в организме человека столбнячный токсин. К протеолитическим клостридиям примыкают виды, использующие в качестве источника углерода и энергии ограниченное число свободных аминокислот. Например, C. cochlearium растет только на среде с глутаминовой кислотой, глутамином и гистидином; C. sticklandii может сбраживать лизин, аргинин, фенилаланин, серин, а C. propionicum – треонин, аланин, серин, цистеин.

С жизнедеятельностью клостридий связаны различные процессы, протекающие в природе: разложение (гниение) азотсодержащих соединений (белков, нуклеиновых кислот) в анаэробных условиях; анаэробное разложение растительных материалов, таких как клетчатка, хитин. Некоторые сахаролитические клостридии могут использовать в качестве субстрата брожения пектиновые вещества, составляющие покровы растительных клеток. Пектин — полимер метил-D-галактуроновой кислоты. Последняя имеет сложное строение и при воздействии на нее пектиновыми ферментами гидролизуется на ряд сахаров, кислот и метиловый спирт. Клостридии, принадлежащие к виду C felsineum, содержат активную пектиназу и могут, поэтому получать энергию, осуществляя маслянокислое брожение пектиновых веществ. Этот вид играет важную роль в процессе мацерации волокон при мочке льна.

Еще в конце прошлого века было обнаружено, что некоторые клостридии патогенны, т. е. вызывают заболевания человека и животных. В основе патогенности клостридиев лежит их способность синтезировать и выделять из клетки высокоэффективные токсины.

К возбудителям маслянокислого брожения относится в первую очередь вид Clostridiumsaccharobutyricum (Granulobactersaccharobutyricum). Клетки его цилиндрической формы, длиной от 4-5 до 7-12 мкм и толщиной от 0,5 до 1-1,5мкм, подвижные, спорообразующие. Перед образованием спор в них накапливается гранулеза. Спора появляется чаще в центре клетки, последняя возле споры расширяется (клостридий). Иногда спора располагается на конце клетки, форма которой приобретает вид ракетки (плектридий). Споры довольно устойчивые, они могут выносить непродолжительное кипячение в течение 1-2 мин.

Clostridiumsaccharobutyricum - облигатный анаэроб, с оптимальной температурой развития 30-40оС, сбраживает многие углеводы и близкие к ним соединения с обильным выделением водорода и углекислоты при одновременном накоплении масляной кислоты. Последняя этими бактериями не потребляется. С.Н. Виноградским описан возбудитель маслянокислого брожения Clostridiumpasteurianum, способный усваивать атмосферный азот. По многим признакам он сходен с предыдущим видом, но отличается от него биохимическими особенностям - он не сбраживает крахмал. К маслянокислым бактериям относится также вид Clostridiumbutyricum и некоторые другие представители. По отношению к источникам азота Маслянокислые бактерии весьма неприхотливы: они усваивают белковый, аминокислотный и аммонийный азот, а некоторые используют азот воздуха.