Смекни!
smekni.com

The Rocket Science Of Tennis And Its (стр. 2 из 2)

less power the player will get. Why do loose strings give more power than tighter

strings? Tennis balls do not store and return energy efficiently. For example, imagine

throwing a tennis ball from a height of 100 inches onto a hard floor. The tennis ball only

rebounds to a height of about 55 inches, a loss of about 45 percent of the initial energy

of the ball. Strings, however, are designed to return 92.5 percent of the energy that is fed

to them (Watts 84). To give the ball the maximum energy, the strings must store the

energy by deflecting. If the strings have a lower tension, they will deflect more and the

ball will deform less. So why not string all rackets loosely? By reducing the tension too

much, the speed of the ball will be inadequate and the strings will wear out too fast from

excessive rubbing. Moreover, by stringing a racket loosely, control must be sacrificed.

Reasons for loss of control because of loose stringing includes: making the speed of the

ball more dependent upon the pace of the opponent?s shot, changing the angle at which

the ball leaves the racket, and increasing the dwell time of the ball on the strings. This

allows the racket to twist or turn more while the ball is still in contact. The looser the

strings, the longer the ball will reside on the strings. The dwell time of the ball on the

strings should increase as the inverse of the square root of the tension. In addition, the

dwell time of the ball on the strings decreases the harder the ball is hit, because the

strings become effectively stiffer the more they are forced to deform (Brody 12).

When a player hits a shot and feels great, he or she has hit the sweet spot.

According to the American Journal of Physics, there are three sweet spots of a racket

(Bloom 4). Sweet spot number one is the initial shock to a players hand. To some this is

known as finding the node of the first harmonic (See figure 3). Sweet spot number two is

when that uncomfortable vibration that many players feel is also a minimum. Sweet spot

number three is when the ball rebounds from the strings with maximum speed and

power. When a racket is struck by a ball, the racket recoils to conserve momentum. If

the ball hits the racket at its center of mass, the racket recoil is pure translation and there

would be no rotation of the racket. Instead, if the ball hits in the center of the strung

area, the racket both translates and rotates. If the ball is not hit exactly at a sweet spot,

however, there will be an initial net force on the player?s hand. If a player hits the ball

closer to his or her hand than this sweet spot, the initial force will pouch on the palm of

his or her hand.

The oscillation amplitude of the racket depends on the point of impact for the

occurring vibrations. When a racket hits the ball, the racket deforms due to the impact

and then begins to oscillate for tenths of seconds (See attachment 4 &5). Since most

tennis players, like myself are not able to hit the ball at the second sweet spot every time,

manufacturers have attempted to reduce the vibrations with special vibration-damping

materials. Some say these small devices that fit on the strings are purely psychological.

Research, however, shows that the feedback from the racket is dramatically affected.

These small devices ?damp the vibrations of the strings that oscillate up to 500 to 600

cycles per second? (Randall). In doing this, they change the sound of the interaction

between the ball and the racket.

When a tennis player hits the ball off-center, the racket tends to twist and the shot

is more than likely to go out of bounds. The property of the racket to resist this change in

twisting is known as the roll moment of inertia. The quantity m(r squared) represents the

rotational inertia of the particle and is called its moment of inertia. It is calculated as the

mass of the object times the distance of that mass from the axis squared. If the moment

of inertia is made larger, the racket is less likely to twist and will gain stability along the

long axis (Brody 214) (See figure 2). The moment of inertia can be increased by adding

masses along the outside edge of the head. The Wilson?s Hammer System was created to

do just this. The theory behind the Hammer (another racket) is ?that it is head heavy,

providing more power due to an increased moment of inertia? (Brody 214). In addition

to the head?s weight, the moment can be increased by increasing head-width. Because

inertia depends on the factor m(r squared), increasing the width also increases the polar

moment significantly more than increasing the mass. The polar movement is the

property of an object to resist twisting. Increasing the head on the racket reduces the

likelihood that the racket will twist in the player?s hand after an off center hit.

Through the understanding of the motion of the ball, characteristics of swings,

and general anatomy of the racket, one can see how physics influences even the most

basic aspects of tennis. Even though people participating in the game of tennis are not

completely aware of the physics in each shot, they are still able to enjoy the game. A

person who is seriously interested in the game of tennis, however, can figure out a lot by

studying the various laws of physics and how they determine the course of the sport of

tennis. That was my father?s intention when challenging me to research the Radical Tour

260. I did eventually obtain the racket. Through research? No, the coach called and

suggested the racket to my parents. Researching racket science and characteristics of the

sport of tennis has brought much humor to my parents. Was it fate that determined that I

would one day be researching the physics of tennis, or is this all a big dangerous

conspiracy between my professors, coaches, and parents?

Works Cited

Barnaby, John M. Racket Work- the Key to Tennis, Allyn and Bacon. Boston, MA. 1969.

Bloom, Phil. ?Finding Sweet Spots.? Phil Bloom.

(14 March 1998).

Brody, Howard. ?The Moment of Inertia of a Tennis Racket? Physics Today. April,

1985; (p. 213-215).

Brody, Howard. Tennis Science for Tennis Players, University of Pennsylvania Press.

Philadelphia, PA. 1987.

Cantin, Eugene. Topspin to Better Tennis, World Publications. Mountain View, CA.

1977.

Randall, James. ?The Tennis Racket,? Newton at the Bat: the Science in Sports. ed.

Schier and Allman. 1984.

Watts and Bahilli. Keeping Your Eye on the Ball, University of Pennsylvania Press.

Philadelphia, PA. 1994.