Смекни!
smekni.com

Гены идентичности цветковых меристем (стр. 2 из 4)

Еще несколько генетических локусов по крайней мере немного влияют на судьбу цветковой меристемы. Хотя мутанты по гену арабидопсиса APETALA2 (АР2) и имеют цветки без признаков генеративного соцветия, в двойных мутантах aplap2, а также Ify ар2 проявляется роль гена АР2 в формировании цветковой меристемы. Более того, при совмещении apl и ар2 в двойных мутантах наблюдается синергидный эффект; органы в мутантных цветках располагаются по спирали, что характерно для побегов, а количество цветков, развивающихся на одном цветоносе, еще увеличивается. Вероятно, АР2 может функционировать в процессе развития меристем при отсутствии активностей LFY или API.

Ген арабидопсиса UNUSUALFLORALORGANS (UFO), как и LFY - важный активатор генов идентичности органов цветка. Мутанты ufo имеют черты как мутантов по генам идентичности цветковых меристем, так и генов идентичности органов цветка. Первые несколько цветков у них заменяются вторичными соцветиями. Как вторичные соцветия, так и основное соцветие у них заканчиваются карпелоидными или сепаяоидными (чашелистикообразными) структурами. Цветки таких вторичных соцветий характеризуются различными типами гомеозисных изменений в первых трех мутовках органов. Наиболее сильно при этом изменяются органы второй и третьей мутовок, в которых лепестки и тычинки заменяются химерными органами, состоящими из тканей чашелистиков, тычинок, карпел, а также филаментозных элементов. В основании многих цветков формируются прицветники или филаментозные структуры. Кроме того, мутанты ufo характеризуются уменьшением количества органов второй и третьей мутовок. Мутовчатое расположение органов у них выражено менее четко, и иногда трудно сказать, к какой мутовке относится тот или иной орган. Кроме того, у мутантов ufo нередко формируются прицветники без образования побегов или цветков в их пазухах. Разнообразие фенотипа мутантов свидетельствует о множественности функций гена UFO в развитии генеративной и цветковой меристем. Гену UFO приписываются следующие функции:

· установление кругового, или мутовчатого, характера формирования органов цветка;

· участие в контроле детерминированности развития цветка;

· активация генов типа органов цветка APETALA3 и PISTILA-ТА (см. далее), необходимых для развития лепестков и тычинок;

· определение границ между мутовками органов внутри цветочного зачатка.

Мутации в гене LFY в основном эпистатируют над мутациями ufo, что свидетельствует о возможном участии обоих генов в одном пути передачи сигнала. Чтобы проверить, справедливо ли предположение о том, что ген UFO может являться медиатором между геном идентичности меристем LFY и геном типа органов цветка АРЗ, растения арабидопсиса были трансформированы конструкциями с химерным геном из кодирующей последовательности гена UFO, слитой с конститутивным промотором p35S ВМЦК. В цветках таких трансгенных растений инициация экспрессии гена АРЗ происходила преждевременно и в местах, где у дикого типа этот ген не экспрессируется.

Таким образом, ген UFO и в самом деле является регулятором гена АРЗ. В цветках растений p35S::UFOIfy не формируются нормальные лепестки и тычинки. Ген UFO, по-видимому, способен нормально функционировать только при наличии активности гена LFY. Более вероятно, что ген UFO является частично вырожденным корегулятором, действующим вместе с геном LFY, а не просто медиатором между генами идентичности меристем и генами типа органов цветка.

Мутанты ufo похожи на мутанты по гену львиного зева FIM-BRIATA (FIM). Вероятно, эти гены являются гомологами. Фенотип мутантных по гену FIM цветков зависит от силы мутантной аллели. Цветки fim имеют лепестки с полосами тканей чашелистиков больших или меньших размеров. Такие полосы чаще всего располагаются в срединной части нижних лепестков. Иногда в пазухах второй мутовки чашелистиков развиваются вторичные цветки. В цветках сильного мутанта fim 62 тычинки часто заменяются карпелами, сливающимися с карпелами четвертой мутовки. Крайнее выражение мутантного фенотипа fim62 - недетерминированные цветки, состоящие из чашелистиков. Мутанты по генам UFO и FIM формируют цветки, очень сильно варьирующие по фенотипу, что справедливо для всех аллелей обоих генов.

Мутации в локусе арабидопсиса TERMINALFLOWER1 (TFLI) приводят к фенотипу, противоположному таковому для мутаций по генам идентичности цветковой меристемы. Апикальная и латеральная меристемы соцветия у них заменяются цветковыми меристемами. Кроме того, как тоже упоминалось ранее, мутанты tfllцветут раньше растений дикого типа. В отличие от растений арабидопсиса дикого типа, имеющих недетерминированное соцветие с множеством цветков и вторичными и третичными соцветиями, мутанты tfllимеют детерминированное первичное соцветие всего лишь с несколькими цветками и не образуют вторичных соцветий. Соцветие заканчивается аномальным цветком, состоящим из двух-трех неполных цветков. Похоже, вторичные меристемы соцветия у мутантов tfllзаменяются меристемами цветка, а первичная генеративная меристема превращается в 2—3 смежные цветковые меристемы. Можно предположить, что ген TFL1 необходим для поддержания функциональности, или компетентности, цветковой меристемы, хотя, по-видимому, он активен и в вегетативной фазе развития. TFL1 также играет роль в негативной регуляции экспрессии генов LFY и API в апикальных и латеральных меристемах, хотя такая регуляция может осуществляться и опосредованно.

Гомологом гена TFL1 у львиного зева является ген CENTRO-RADIALIS (CEN). В норме соцветия львиного зева, как и арабидопсиса, являются недетерминированными: цветки образуются в латеральных положениях, и никогда не формируется терминальный, или апикальный, цветок, который был бы последним цветком в соцветии. При этом гены FLO, LFY, SQUA и API экспрессируются в латеральных меристемах, но не в апикальной части соцветия. Однако в апексах меристемы мутантов сеп, как и tfll, образуются терминальные цветки. Как и ожидалось, вышеперечисленные гены экспрессируются в апексах меристем этих мутантов. Более того, условия окружающей среды, которые усиливают фенотип Ify, например короткий день, ослабляют фенотип tfll. Таким образом, гены CEN и TFL1, по-видимому, являются антагонистами генов, индуцирующих развитие цветка, и, возможно, могут предотвращать их экспрессию в апексе соцветия. На основе анализа фенотипов двойных мутантов предполагают, что TFL1 является антагонистом генов LFY, API и АР2. Мутации Ifyчастично супрессируют tfll, двойные мутанты Ifyaplили Ifyap2 характеризуются более выраженным супрессирующим эффектом на фенотип tfll. Терминальный цветок мутантов сеп обладает радиальной симметрией: все его лепестки напоминают вентральные лепестки цветков дикого типа. Количество органов цветка сеп и их филотаксис (расположение} очень вариабельны


Глава 2. Молекулярная характеристика генов, контролирующих идентичность цветковой меристемы

2.1 Молекулярная характеристика генов FLO (львиный зев) и LFI (арабидопсис)

Ген львиного зева FLO был клонирован одним из первых генов, влияющих на развитие цветка. Для его клонирования использовали мутант По-613, образующий генеративные соцветия вместо цветков. Однако гомозиготы по flo-613 изредка формировали нормальные цветки. Из семян этих цветков развивались растения дикого типа. Значит, мутация flo-613 генетически нестабильна и иногда ревертировала к аллели дикого типа. Реверсия коррелировала с эксцизией транспозона ТатЗ и, следовательно, мутантный фенотип был обусловлен инсерцией этого мобильного элемента в ген FLO. Таким образом, ген FLO был клонирован с использованием последовательности транспозона ТатЗ в качестве пробы. У всех ревертантов к дикому типу при использовании клонированного фрагмента гена FLO как пробы для гибридизации появлялся фрагмент длиной 4т. п. о. Такой же длиной обладал гибридизовавшийся с FLO фрагмент исходного растения дикого типа, использованного для транспозонового мутагенеза. При этом у некоторых ревертантов сохранялся фрагмент длиной 7.5 т. п. о., такой же, как и у мутанта flo-613. Вероятно, среди ревертантов были как гетерозиготные, так и гомозиготные растения.

Однако при гибридизации ДНК мутантных растений среди них тоже были выявлены гетерозиготы, у которых присутствовали оба фрагмента. Так, при секвенировании сайта эксцизии ТатЗ из гетерозиготы с фенотипом По обнаружили инсерцию 8 пар оснований. Таким образом, неточная эксцизия ТатЗ приводила к изменению рамки считывания, и мутантный фенотип сохранялся.

В сайте эксцизии у ревертанта отмечены замены двух пар оснований, и не обнаружены инсерции или делеции нуклеотидов. В потомстве от самоопыления всех гетерозиготных ревертантов имеются растения дикого типа и мутанты в соотношении 3:3. Потомство большинства гомозиготных ревертантов состояло только из растений дикого типа.

Мутация flo-613, как и многие другие гомеозисные мутации львиного зева, использованные для клонирования генов развития цветка и о которых пойдет речь в этой главе, была получена в массивном эксперименте по транспозоновому мутагенезу. Растения львиного зева с высокоактивными мобильными элементами Тат (от TransposoneofAntirrhinummajus) выращивали при температуре 15 °С. Именно при этой температуре для мобильных элементов группы Тат наблюдается наибольшая частота транспозиций. Многие из 26000 потомков Ml этих растений, полученных при самоопылении, содержали рецессивные мутации в гетерозиготном состоянии. Такие рецессивные мутации можно было выявить в следующем поколении М2 после самоопыления растений Ml. И в самом деле, среди 80000 растений М2 было обнаружено более 15 независимых гомеозисных мутаций, затрагивающих развитие цветка (рис.2).