Смекни!
smekni.com

Выделение, изучение свойств микроорганизмов и их использование для выполнения подготовительных процессов переработки овчинно-мехового сырья (стр. 19 из 21)

Большой интерес представляют исследования разложения ПАВ чистыми культурами микроорганизмов. Так, Ризен /61/ показал, что Ps. aeruginosa, Serratia marcenses, Escherichia coli, Aerobacter aerogenses при выращивании на синтетической среде могут использовать различные анионные ПАВ в качестве единственного источника углерода. Обнаружено, что на скорость биоразложения влияет минеральный состав питательной среды. Из почвы, сточных вод и активного ила были выделены бактерии, способные расти на среде с АБС в качестве единственного источника углерода: Alcaligenes faecalis (7 культур), A. viscosus (2), A. bookeri (1), Pseudomonas sp. (11), Flavobacterium suaveolans (1), Escherichia coli (1). 15 штаммов из 34 прекрасно росли на АБС. Для 7 культур не была токсичной даже такая высокая концентрация вещества, как 1000 мг/л.

Также были выполнены интересные работы. Из почвы, взятой в районе очистного сооружения, методом накопления были выделены два штамма Pseudomonas – С12 и С12В. Первый штамм разрушал только додецилсульфат (ДДС), второй еще и додецилбензолсульфонат. Необходимо отметить, что представители рода Pseudomonas особенно часто выделяются из культур накопления на средах с анионными ПАВ. Так, на селективной среде с АБС из активного ила были изолированы 16 штаммов. Все выделенные культуры разрушают линейны алкилбензолсульфонат.

Были выделены из сточной воды и изучены активность деструкции лаурилсульфоната и тетрапропилбензолсульфоната у 40 штаммов бактерий, отнесенных к разным родам. Большинство культур довольно быстро разрушало лаурилсульфонат. Тетрапропилбензолсульфонат оказался более стойким к биодеградации. Разложение этого соединения вызывали Bact. imperiale и смесь Corynebacterium annamensis и Flavobact. diffusum. Как свидетельствуют опыты, в метаболизме АБС принимают участие и представители рода Bacillus. Bacillus sp., изолированный из хозяйственно-бытовых стоков на солевой среде с 0,05% ундецилбензол-n-сульфоната, рос на всех гомологах этого соединения с длиной алкильного радикала от С1 до С18, на бензолсульфонате, n-оксибензоате, 3,4 – диоксибензоате. Из различных субстратов (речная и морская вода, бытовые стоки, сточные воды предприятий по производству анионных ПАВ, активные илы городских и заводских очистных установок, почва, песок, ризосфера растений, настой сена) на синтетических средах, содержащих алкилсульфаты (АС) в качестве единственного источника углерода и энергии, изолированы бактерии, активно разлагающие эти соединения.

Для выделения микроорганизмов были использованы метод накопительных культур и разработанный метод обнаружения микробов-деструкторов /62/. Этот метод заключается в посеве исследуемого материала на агаризованную синтетическую среду определенного солевого состава, содержащую 0,7–1,0 г/л ДДС. В такой среде додецилсульфат образует в толще агара кристаллы. Метод основан на способности микробов, разрушающих АС, образовывать вокруг колоний прозрачные зоны в результате использования вещества клетками. Величина зон тем больше, чем выше деструктивная активность штамма. С помощью указанных методов было выделено свыше 100 бактериальных культур, способных метаболизировать ДДС в солевой среде. Детально изучены 42 штамма. Бактерии идентифицированы по определителю Берги на основании 36 признаков. Преобладающее большинство выделенных культур (33 штамма) отнесены к роду Pseudomonas. Среди флюоресцирующих псевдомонад, выделенных из почв, ризосферы и сточных вод, идентифицированы различные биотипы Ps. forescens, Ps. putida, Ps. arantiaca, Ps. aeruginosa. Все выделенные штаммы активно разлагают ДДС, а часть из них – и технические препараты АС, содержащие смесь гомологов с различной длиной углеводородной цепи (табл.). Технические препараты алкилсульфонатов и алкилбензолсульфонатов данными бактериями не разрушались. Попытки изолировать споровые дрожжи оказались безуспешными.

Исследовали способность разрушать алкилсульфаты также у зеленых водорослей рода Chlorella. О роли водорослей в биоразложении ПАВ данных в литературе мало. В то же время вопрос взаимодействия водорослей и ПАВ чрезвычайно важен, поскольку водоросли в большом количестве развиваются в биофильтрах и окислительных прудах, которые используются для биологической очистки сточных вод. Кроме того, значительный интерес представляет изучение водорослей в процессах самоочищения водоемов от ПАВ. В работе Девиса и Глойне /63/ сделана попытка изучить деструктивную способность водорослей и показано, что все взятые в опыт водорослевые культуры слабо разлагают некоторые анионактивные и неионогенные ПАВ. Однако отсутствие контроля бактериального загрязнения ставит под сомнение полученные авторами результаты.

В опытах /64/ исследовались три бактериально чистые культуры зеленых водорослей рода Chlorella: Chl. Vulgaris, штаммы 62 и М, и Chl. pyrenoidosa. Chl. vulgaris M выделена из сточных вод Магнитогорского металлургического комбината, две другие культуры получены в отделе регуляторных механизмов клетки Института молекулярной биологии и генетики АН УССР. Культуры Chl. vulgaris 62 и Chl. vulgaris M выращивали в люминостате при температуре 22–240 и освещенности 3000 лк на модифицированной жидкой и агаризованной среде Тамия. Адаптированный к гетеротрофному способу питания штамм Chl. pyrenoidosa выращивали в темноте в термостате при температуре 26–280 на жидкой и агаризованной среде ФДГА. При изучении влияния ДДС на водоросли к агаризованным средам Тамия и ФДГА добавляли от 1 до 200 мг/л соединения. Через 5–6 суток отмечали наличие или отсутствие роста водорослевых культур. Способность водорослей разрушать ДДС изучали на аналогичных жидких средах с ПАВ. О влиянии ДДС на водоросли в жидких средах судили по приросту биомассы, подсчитывая общее число клеток хлореллы в камере Горяева, и по соотношению живых и мертвых клеток. С целью выявления возможного бактериального загрязнения водорослей культуральную жидкость при каждом отборе проб высевали на МПА и агаризованные среды Тамия и ФДГА с ДДС. При выращивании водорослевых культур на агаризованных средах 1–50 мг/л вещества не оказывают неблагоприятного влияния на их рост. В присутствии 100 мг/л ПАВ отмечено угнетение роста, особенно у автотрофных штаммов. При выращивании на соответствующей жидкой среде с 50 мг/л ДДС автотрофные штаммы Chl. vulgaris 62 и Chl. vulgaris M дают значительно меньший прирост биомассы и более высокий процент мертвых клеток по сравнению с контролем без ПАВ. Концентрация ДДС в культуральной среде этих водорослей не изменяется. В отличие от двух других штаммов Chl. pyrenoidosa дает практически одинаковый прирост биомассы в контроле и опытном варианте, где вместо глюкозы в среду вносили 50 мг/л ПАВ. При этом в среде с ДДС существенно повышается число мертвых клеток. В то же время добавление к полноценной среде ФДГА додецилсульфата натрия в концентрациях 50 и 100 мг/л несколько стимулирует рост культуры Chl. pyrenoidosa. Количество мертвых клеток также превышает их число в контроле, однако их меньше, чем на среде с ПАВ без глюкозы. Во всех опытных вариантах отмечено снижение концентрации ДДС. Убыль большей части ДДС в культуральной жидкости Chl. pyrenoidosa происходит за 8 суток. После этого в среде еще определяются остаточные количества вещества, которое не разрушается при дальнейшем культивировании водорослей. Полное исчезновение ПАВ наблюдается лишь в одном случае – при наличии в среде 50 мг/л вещества и глюкозы. Контроль загрязнения показал, что на протяжении всех опытов культуры водорослей были бактериально чистыми. Таким образом, полученные данные позволяют сделать вывод о том, что некоторые штаммы водорослей Chlorella способны разрушать алкилсульфаты. Активность водорослей значительно ниже активности бактерий. Однако деструкция алкилсульфатов водорослями, по-видимому, может играть определенную роль в водоемах, загрязненных ПАВ.

В последние годы много внимания уделяется изучению путей микробного метаболизма анионных ПАВ, а также выделению и исследованию ферментов, ответственных за их разрушение. Показано /65/, что углеводородные радикалы алкилсульфатов, алкилсульфонатов и алкилбензолсульфонатов окисляются в тех же биохимических реакциях, что и углеводороды, жирные кислоты и спирты. Пути микробной деструкции алкилбензолсульфонатов включают также реакции расщепления бензольного кольца.

АБС более устойчивы к разложению и, поскольку они количественно преобладают в общем объеме продукции ПАВ, их метаболизм изучен детальнее. Основными биохимическими реакциями, ведущими к разрыву связей С-С, в результате чего разрушается молекула АБС, являются w-окисление, т.е. окисление терминальной метильной группы в алкильной цепи, a-окисление, b-окисление и деструкция бензольного кольца при помощи механизмов орто- или мета-расщепления. w-Окисление алкильного радикала происходит аналогично разложению прямоцепочечных углеводородов через образование спирта и альдегида до карбоксикислоты:

– СН2-СН3 ® – СН2-СН2ОН ® – СН2-СНО ® – СН2-СООН.

При a-окислении алкильная цепь прогрессивно укорачивается на один атом углерода, который выделяется в виде СО2. b-Окисление ведет к последовательному уменьшению алкильной цепи на два атома углерода сразу.