Смекни!
smekni.com

Основы биохимии (стр. 2 из 2)

Т. о., процесс окисления субстрата кислородом опосредован серией окислительно-восстановительных реакций; в результате каждой из этих реакций энергия, запасённая в молекуле окисляемого субстрата, освобождается небольшими порциями, что позволяет клетке использовать её более полно. Утилизация высвобождаемой энергии происходит в так называемых пунктах энергетического сопряжения. Синтез АТФ из АДФ и фосфата осуществляется ферментным комплексом АТФ-синтетазой (который может катализировать и обратную реакцию - расщепление АТФ).

Эффективность окислительного фосфорилирования оценивают с помощью отношения Р/О, т. е. количества фосфата, связанного при фосфорилировании АДФ, отнесённого к поглощённому О2. Одна молекула АТФ образуется при переносе 2 электронов через пункт энергетического сопряжения. Р/О при окислении

В результате окислительного фосфорилирования в клетках накапливается АТФ - важнейшее макроэргическое соединение, расходуемое затем на обеспечение энергией различных процессов жизнедеятельности.

вопрос 8

Гликолиз, его энергетический эффект и биологическое значение.

Гликолиз [3-5] – это процесс расщепления углеводов (гл. обр. глюкозы) в отсутствии кислорода под действием ферментов. Конечный продукт гликолиза в клетках животных – молочная (или масляная) кислота. В растительных клетках конечным продуктом гликолиза служит пировиноградная кислота. Освобождающаяся при гликолизе энергия используется в процессах жизнедеятельности. Гликолиз тесно связан с дыханием и брожением. Гликолиз – один из основных источников энергии в клетках. Переносчиком электронов и протонов в этих окислительно-восстановительных реакциях служат коферменты НАД и НАДН, имеющиеся в составе бактериальных клеток и митохондрий, или функционально близкие НАДФ и НАДФН, содержащиеся в хлоропластах. Суммарная реакция гликолиза:

С6Н12О6 + 2Фн + 2АДФ ® 2С3Н4О3 + 2АТФ + 2Н2О.

Для того чтобы проанализировать энергетику гликолиза, разделим суммарное его уравнение на два процесса, а именно: превращение глюкозы в лактат (экзотермический процесс) и образование АТФ из АДФ и фосфата (эндотермический процесс):


Глюкоза ® 2 Лактат, DGо1¢ = -47,0 ккал;

2Фн + 2АДФ ® 2АТФ + Н2О, DGо2¢ = 2×7,30 = +14,6 ккал.

Суммарная реакция:

С6Н12О6 + 2Фн + 2АДФ ® 2С3Н4О3 + 2АТФ + 2Н2О.

DGоs¢ = DGо1¢ + DGо2¢ = -47,0 ккал + 14,6 ккал = -32,4 ккал.

Из данных об изменении свободной энергии становится ясно, что расщепление глюкозы до лактата сопровождается освобождением такого количества энергии, которого более чем достаточно для фосфорилирования двух молекул АДФ до АТФ. Легко подсчитать, что 14,6/47,0×100, т.е. примерно 31 % свободной энергии, освобождающейся при расщеплении глюкозы до лактата, запасается в виде энергии фосфатных связей АТФ. Приведенный расчет относится к 1,0 М концентрациям; если же учесть истинные внутриклеточные концентрации реагентов и продуктов, то окажется, что эффективность гликолиза внутри клетки значительно выше 31 %.

Суммарный процесс гликолиза, даже с учетом сопутствующего образования АТФ, сопровождается все же очень сильным уменьшением свободной энергии, составляющим 32,4 ккал. Гликолиз представляет собой, таким образом, практически необратимый процесс, для которого состояние равновесия смещено почти полностью в сторону образования лактата. Тем не менее, большинство этапов этого процесса характеризуются сравнительно небольшими величинами изменения свободной энергии. Эти реакции обратимы, и соответствующие обратные реакции используются при биосинтезе глюкозы из лактата и других предшественников.

вопрос 9

Аэробная и анаэробная работоспособность организма.

Работоспособность организма – это способность совершать работу, требующая затраты (выделения) энергии. Энергия в организме высвобождается в процессе дыхания – окисления органических веществ (белков, жиров и углеводов) кислородом воздуха.

Следовательно, в анаэробных (бескислородных) условиях на фоне снижения уровня кислорода будет наблюдаться уменьшение интенсивности окисления органических веществ и, как следствие, снижение количества выделяемой энергии, а значит и уменьшение работоспособности организма.

В аэробных условиях, наоборот, на фоне возрастания уровня кислорода будет наблюдаться повышение интенсивности окисления органических веществ и, как следствие, увеличение количества выделяемой энергии, а значит и повышение работоспособности организма.

вопрос 10

Биохимические основы быстроты (скорости) как качества двигательной деятельности.

Двигательная деятельность обеспечивается с помощью миофибрилл – органелл клетки, отвечающих за сокращение. Основными компонентами миофибриллы являются мышечные нити. Последние бывают 2-х типов: толстые нити имеют диаметр 15 нм и содержат в основном нитевидный белок миозин, а тонкие имеют 7 нм в диаметре и состоят из актина, тропомиозина и тропонина [1].

Миозин построен из двух больших и четырех малых полипептидных цепей. Каждая большая цепь состоит из двух частей: вытянутого "хвоста", имеющего a-спиральную конформацию, и глобулярной "головки". Хвосты обеих больших нитей заплетены друг вокруг друга, образуя сверхскрученную структуру длиной 140 нм. Глобулярная головка каждой большой цепи находится в комплексе с двумя малыми цепями; весь комплекс также является глобулярным. Таким образом, молекула миозина имеет две глобулярные головки и один фибриллярный двухцепочечный хвост.

Актин находится в миофибриллах в форме F-актина (F-фибриллярный). F-актин – это полимер, а мономерные единицы, из которых он построен, называются G-актином (G-глобулярный). По своей структуре F-актин похож на две нитки бус, в которых бусинками служат молекулы G-актина; нитки закручены друг вокруг друга в спиральную структуру с шагом 36-38 нм.

Молекула тропомиозина представляет собой тяж длиной 40 нм, образованный двумя переплетающимися a-спиральными полипептидными цепями. Тропомиозин связан с F-актином. Каждая молекула тропомиозина охватывает семь G-актиновых глобул, причем соседние его молекулы немного перекрываются между собой, так что образуется непрерывная тропомиозиновая цепь, идущая вдоль F-актинового волокна. Поскольку F-актин состоит из двух ниток, с ним связаны и две тропомиозиновые цепочки.

Тропонин является комплексом трех белков: тропонина I, тропонина T и тропонина С. Он имеет в целом более или менее глобулярную форму и располагается на F-актине через правильные промежутки, равные примерно 38 нм.

Обеспечение сокращения энергией осуществляет АТФ. Глобулярные головки миозина связывают АТФ и быстро гидролизуют его, но не так легко освобождают продукты гидролиза – АДФ и Фн. F-актин, который связывается с миозином, образуя комплекс, называемый актомиозином, ускоряет отсоединение АДФ и Фн от миозиновых головок. Освободившиеся АТФ-связывающие участки актомиозинового комплекса могут связать новые молекулы АТФ, но, как только это происходит, индуцируется диссоциация актомиозина на актин и миозин. Такой цикл может повторяться многократно – в присутствии достаточного количества АТФ. Описанное взаимодействие актина и миозина лежит в основе молекулярного механизма сокращения.

Процесс сокращения включает в себя цикл наклона головок миозина, состоящий из 4-х стадий [1]:

1. Миозин в толстых нитях содержит связанные АДФ и Фн, но не связан с актином тонких нитей.

2. При поступлении сигнала к сокращению глобулярные миозиновые головки со связанными АДФ и Фн прикрепляются к актину (образуется актомиозин).

3. Образование актомиозина ускоряет освобождение АДФ и Фн, что сопровождается наклоном головок миозина; при наклоне головки происходит скольжение все еще прикрепленной к ней тонкой актиновой нити вдоль толстой, что приводит к укорочению саркомера.

4. АТФ связывается с миозиновыми головками в актомиозине, и это приводит к отсоединению актина от миозина, после чего гидролиз АТФ миозином возвращает систему к первой фазе цикла.

Регуляция быстроты сокращения опосредуется ионами кальция. При низких концентрациях Са2+ тропонин и тропомиозин препятствуют взаимодействию актина с миозином [1]. Когда приходит нервный импульс и происходит деполяризация мембраны клеток, внутриклеточный уровень Са2+ повышается, это вызывает Са2+-зависимое изменение конформации тропонина, которое передается тропомиозину, и в результате тропомиозин меняет свое положение на актиновой нити так, что ее связывающие участки становятся доступными для головок миозина.

литература

1. Рис Э., Стернберг М. Введение в молекулярную биологию. – М.: Мир, 2002. – 142 с.

2. Ленинджер А. Биохимия. – М.: Мир, 1974. – 957 с.

3. Реймерс Н.Ф. Популярный биологический словарь. – М.:Наука, 1990. – 544 с.

4. Третьяков Н.Н. Физиология и биохимия сельскохозяйственных растений. – М.: Колос, 2000. – 640 с.

5. Красильникова Л.А., Авксентьева О.А., Жмурко В.В. и др. Биохимия растений. – Р-д: Феникс, 2004. – 224 с.