Смекни!
smekni.com

Osmosis In Tomatos Essay Research Paper This

Osmosis In Tomatos Essay, Research Paper

This graph shown above gives the line of best fit for the percentage change in mass of the potato chips over the course of the thirty minute experiment. The graph is a curve that slopes downwards and does not go through the origin. Because the line is not straight and does not pass through the origin, it means that the percentage gain and loss in mass and concentration are not directly proportional. However, there is a pattern on my graph, and this is, as the concentration of the solution increases, the percentage change in mass decreases. The graph shows that the percentage gain and loss in inversely proportional to the concentration. The gradient does change in my graph. It gets less steep as X axis gets bigger. This is because the potato chip is becoming as flaccid as it possibly can, and so the change in mass of each molar concentration is becoming closer and closer together. From the line of best fit that has been added in, it can be seen that all of my points were very close to creating a perfectly smooth curve. This shows that my results are fairly reliable. My graph fits in with my prediction of the experiment graph.

It shows that the potato cells increase in mass in solutions with a high water concentration and decrease in mass in solutions with a low water concentration. When the concentration reaches above 0.75 M, there appears to be no further water loss, suggesting that the cell is fully plasmolysed. From the graph an estimate to the concentration of the potato cell can be made as 0.13 M, as this is the point where the potato is not increasing or decreasing in mass, this is known as the isotonic point. This is where no osmosis is taking place, both the potato and the solution have an identical molar concentration. The next point, 0.25 M looses approximately 4.0 %. This shows that the water potential of the salt solution in the beaker is weaker than that of the potato chip. The next, 0.50 M, looses approximately 8.0 % in mass. This shows that the salt solution has an even weaker water potential than 0.25 M and that osmosis took place. This is why the potato lost even more mass, and it shows that the water potential in the beaker is less than that of the potato chip. This pattern carries on through the graph, and even more mass is lost, as more water moves out of the potato into the solution. My results also match with my initial predictions.

This graph of the change in mass helps prove the point of complete plasmolysis, whereby the potato cannot expand and take in any more water. As you can see as the molar concentration increases the change in mass decreases. From right to left the first two points on the graph are very spread out indicating that there was a large change in the mass. This decreases throughout the increasing molar concentration until the change is minuscule (about 0.02g).

This graph above shows a clear indication that there was an overall decrease in mass during the experiment. At the point 0.00 M the line for after the experiment is above the line for before the experiment unlike any of the others. This is because the water potential of the sugar solution is higher than that of the potato chip.

Skill Area E: Evaluation

The experiment was very successful in my opinion. I obtained a large quantity of very accurate results from which I was able to create informative graphs. I think I took easily enough results for the amount of concentrations that I was using, and the time that I used for the experiment to last was enough to allow sufficient osmosis to occur. However if I was to repeat the experiment I might well increase the time of the result to allow more osmosis to happen and possibly find out the saturation point of the chips. The range of concentrations was adequate but I would possibly create more concentrations if I repeated the experiment so that I would have more varied results, i.e. 0.10m, 1.15m, 1.20m, and so on. This way would have allowed me to also find out the isotonic point far more accurately as the one that I estimated is very approximate.

The cutting of the potatoes was the most difficult part of the experiment as although I was recording my results by mass, it could well have affected the surface area and so the overall rate of osmosis. If I were to repeat the experiment I would have possibly found a machine to cut the potato as it would ensure that all potatoes would be the same weight and dimensions. As well as the potato I could have found a more accurate way to measure out the solutions and to determine the molar concentrations. Perhaps I could have used a burette. This would ensure that I have an accurate amount of fluid in each test tube. I could also weigh each chip on a more accurate scale, e.g. not to 0.00g but to 0.0000g.

There were not any out of the ordinary results, but some were not as close to the line as others. This may have been caused by human. When the potato chips were removed from the test tubes and dried I may well have dried some potatoes more thoroughly than others and so some would have more excess water, which would add to the mass. If the experiment was repeated I could find another way to dry the potatoes that would ensure that all were dried in the same way for the same time. However with all this said I think that the experiment was truly successful and I was very pleased with the complete comparison of my results with my initial prediction.