Смекни!
smekni.com

Влияние биологически активных факторов окружающей среды на наследственные системы организма человека (стр. 2 из 3)

Анализ аберраций хромосом в лимфоцитах периферической крови людей, пострадавших от воздействия ионизирующего излучения, дало возможность выяснения в несколько раз числа нестабильных и стабильных аберраций хромосом по сравнению с контролем. Стало известно, что число нестабильных аберраций хромосом снижается во времени. Принято считать, что в лимфоцитах периферической крови уменьшается в двое в течении 3-4 лет. Однако наблюдаемый через 8 лет после аварии на ЧАЭС повышенный уровень аберраций может быть связан с постоянным поступлением в кровь клеток с аберрациями хромосом вследствие деления несущих аберрации хромосом стволовых клеток кроветворной ткани, тоже пораженной радиацией [3].

Генетическое облучение человека – ожидаемые генетический эффект у потомков облученных людей, внуков, правнуков и т.д., чтобы оценить эти эффекты у первых поколений после облучения используют подходы, которые основаны на двух методах: метода удваивания дозы и прямого метода.

Метод удваивающей дозы основывается на такой же дозе, при которой наблюдается естественный мутационный процесс. Но при использовании данного метода надо учитывать, что естественный уровень мутационного процесса в популяции человека – это равновесный уровень, который исторически сложился и зависит от интенсивности мутационного процесса и интенсивности отбора против возникших мутаций. Интенсивность отбора снижена, так как достаточно высокий уровень естественной изменчивости человека.

При длительном хроническом облучении популяций человека равновесный уровень мутагенеза устанавливается только через семь-десять поколений с начала облучения. При этом индуцированные ионизирующим излучением мутационные изменения зависят от мощности дозы.

При удвоенной дозе равновесный уровень мутагенеза от ионизирующих излучений сравнятся с равновесным уровнем естественной изменчивости человека и общий уровень мутагенеза удвоится [3].

Следует помнить, что все расчеты по оценке динамики мутационного процесса в облучаемых популяциях человека получены на основе экспериментов, проводимых с хронически облучаемыми популяциями модельных объектов исследований – дрозофилы и лабораторных мышей. В настоящее время в мировой научной литературе нет данных, которые позволили бы корректно оценить динамику мутационного процесса непосредственно в облучаемых популяциях человека, несмотря на популяции, которые подвергались облучению в местах с радиоактивным загрязнением.

В зависимости от той степени, в которой генетические изменения приводят к мультифакториальным болезням и врожденным аномалиям, могут индуцироваться ионизирующими излучениями, будет изменяться и ожидаемый генетический риск в следующих поколениях. Можно предположить, что болезни составляющую основную часть естественной наследственной отягощенности популяций человека, не будут индуцироваться радиацией (что весьма маловероятно), то генетический риск в первом поколении составит 17 случаев наследственных болезней на 1млн новорожденных при дозе 0,01Зв. Если же эти болезни сложной этиологии будут действительно индуцироваться радиацией, то генетический риск облучения популяции человека составит значительно большую величину – 50-350 случаев на 1млн новорожденных при дозе облучения 0,01Зв.

Прямой метод – путь анализа частоты индуцированных мутаций отдельных генов, анализа частоты аберраций хромосом и изменения числа хромосом у человека и экспериментальных объектов. Например, зная частоту мутаций отдельных генов в расчете на 0,01Зв и зная частоту структурных генов в геноме человека (около 100 тысяч) можно оценить суммарную ожидаемую частоту появления генных мутаций при той или иной дозе [3]. Данный метод позволяет дать оценку частоте индуцированных мутаций и реципрокных транслокаций.

Необходимо отметить, что при использовании прямых методов основные результаты по частотам индуцированных мутаций у человека рассчитаны путем экстраполяции с данных, полученных на экспериментальных животных.

Приведенные количественные показатели риска относятся к числу ожидаемых случаев серьезных генетических болезней. Термин "серьезные генетические болезни" означает плохое состояние здоровья, мешающее трудоспособности, физические и умственные недостатки или нетрудоспособность генетического происхождения [3], которые могут появиться в любой момент от рождения до старости. Можно оценить генетический ущерб от ионизирующих излучений. Для оценки могут быть использованы показатели неполноценной жизни (домашняя изоляция, пребывание в больницах и т.д.), а так же сокращение продолжительности жизни.

Важно отметить, что под действием ионизирующих излучений популяции могут претерпевать серьезные изменения генетической структуры, влияющие на формирование последующих поколений [3]. По результатам исследования, итогом сильных облучений наблюдается обеднение генофонда по сравнению с контролем вследствие снижения генетического разнообразия аллелей, выявляемых путем электрофореза белков.

Недостаточно изучена генетическая чувствительность половых клеток человека и ранних эмбриональных этапов. В данном направлении были получены важные данные белорусских генетиков при изучении последствий Чернобыльской катастрофы. В загрязненных радионуклидами районах Беларуси увеличилась частота всех пороков, особенно частота расщелин губы и неба, удвоение почек и мочеточников, полидактелии и дефектов нервной трубки. Так же были выявлены такие заболевания как анэнцефалия, спинномозговые грыжи, расщелины губы и/или неба, полидактилия, редукционные пороки конечностей, атрофия конечностей и ануса, синдром Дауна и отдельные группы множественных врожденных пороков развития.

3. ВЛИЯНИЕ МУТАГЕННЫХ ФАКТОРОВ НА МИТОХОНДРИАЛЬНУЮ ДНК. МИТОХОНДРИАЛЬНЫЕ ПАТОЛОГИИ

Митохондрию можно рассматривать как генетическую химеру: ее 13 важнейших полипептидов кодируется митохондриальным геномом, но сотни других полипептидов, из которых собрана митохондрия, кодируются ядерными генами. Мутации в ядерных генах ведут себя как классические менделевские факторы, то есть вызванные ими болезни наследуются как аутосомно-рецессивные или как аутосомно-доминантные. Мутации в митохондриальном геноме отличаются от ядерных мутаций. Митохондрии не подвергаются митозу, поэтому в процессе клеточного деления митохондрии распределяются между дочерними клетками случайным образом. Этим объясняется то, что митохонриальная наследственность является более сложной, чем ядерно-хромосомная.

Особенной отличительной чертой генетических болезней, вызываемых мутациями в мтДНК, является материнское наследование. Не смотря на то, что сперматозоид содержит митохондрии, при оплодотворении они не проникают в яйцеклетку. Поэтому эмбрион получает все митохондрии от яйцеклетки. Следовательно, если мужской арготизм является носителем митохондриальной болезни, то он не может ее передать своим потомкам, в то время как потомки женщины могут быть поражены этой болезнью.

Фактором, который усложняет картину наследования митохондриальных болезней, является существование такого явления, как гетероплазмия. Гетероплазмия – генетическая гетерогенность популяции митохондрий у некоторых индивидуумов. Когда мутация возникает в мтДНК, она воспроизводится во всех ее копиях, но при этом нет механизма, по средствам которого данная мутация распространялась бы на все другие молекулы мтДНК в той же клетке. Когда начинает делится клетка, содержащая смесь нормальных и мутагенных молекул мтДНК, то дочерняя клетка получает случайную смесь таких митохондрий [2]. Таким образом, гетероплазмия в каждой новой клетке может быть большей или меньшей, чем в родительской клетке. Так как большинство мутаций в мтДНК отрицательно влияют на энергетический обмен, то можно понять, что если вся мтДНК в данной клетке будет мутагенной, то есть возможность, что клетка будет не жизнеспособна. На данный момент не известно, гетероплазмия какой степени является совместимой с нормальной жизнью, а при какой индивидуум становится клинически пораженным. Это сильно зависит от природы мутации, а также от остального генетического фонда у каждого индивидуума.

Важным является вопрос: будет ли ребенок поражен генетической болезнью в большей или меньшей степени, чем его пораженная болезнью мать? Яйцеклетка человека содержит примерно 100000 молекул мтДНК. Некоторые исследователи предполагают существование некоего генетического "горлышка бутылки" (узкого моста) в процессе оогенеза – времени, когда число митохондрий в клетке мало. Если это возможно, то тогда случайное распределение митохондрий может приводить к большим различиям в уровне гетероплазмии в каждой яйцеклетке [2]. Однако эта гипотеза не подтверждена. Другим фактором, который может влиять на уровень гетероплазмии у детей пораженных болезнью матери, является то, что мтДНК не реплицируется пока эмбрион не закрепится в матке. Молекулы мтДНК, которые присутствуют в яйцеклетке, распределяются между клетками зародышевого пузыря (бластоцистами) случным образом. Потому есть вероятность, что в этих клетках уровень гетероплазмии будет различным. Существует доля какой-либо ткани или органа взрослого организма может быть потомком всего лишь одной клетки-бластоцисты. Кроме того, доля мутагенных молекул мтДНК может изменятся в тканях организма по мере его развития и с возрастом. В результате симптомы некоторых митохондриальных болезней развиваются не только между разными семьями, но и внутри одной.

Другой способ классифицировать генетические болезни, вызванные мутациями в мтДНК, – разделить их на болезни вызванные мутациями в 13 генах, кодирующих белки, и вызванные мутациями в генах для тРНК или рРНК. Мутации в мтДНК в любом из генов для митохондриевых рРНК или тРНК затронут синтез белка целиком, тем самым снизит общее количество функциональных копий белков, кодируемых мтДНК. Таким образом, маловероятно то, что мутации в генах для мтДНК достигают гомоплазмии, так как общее снижение энергетического обмена сделает клетки не жизнеспособными, даже если дефект умеренный.