Структурные уровни организации материи 2 (стр. 1 из 8)

1. Структурные уровни организации материи

В самом общем виде материя представляет собой бесконечное множество всех сосуществующих в мире объектов и систем, совокупность их свойств, связей, отношений и форм движения. При этом она включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все то, что не дано нам в ощущениях. Весь окружающий нас мир — это движущаяся материя в ее бесконечно разнообразных формах и проявлениях, со всеми свойствами, связями и отношениями. В этом мире все объекты обладают внутренней упорядоченностью и системной организацией. Упорядоченность проявляется в закономерном движении и взаимодействии всех элементов материи, благодаря чему они объединяются в системы. Весь мир, таким образом, предстает как иерархически организованная совокупность систем, где любой объект одновременно является самостоятельной системой и элементом другой, более сложной системы.

Согласно современной естественно-научной картине мира все природные объекты также представляют собой упорядоченные, структурированные, иерархически организованные системы. Исходя из системного подхода к природе вся материя делится на два больших класса материальных систем — неживую и живую природу. В системе неживой природы структурными элементами являются: элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы, галактики, метагалактики и Вселенная в целом. Соответственно в живой природе основными элементами выступают белки и нуклеиновые кислоты, клетка, одноклеточные и многоклеточные организмы, органы и ткани, популяции, биоценозы, живое вещество планеты.

В то же время как неживая, так и живая материя включают в себя ряд взаимосвязанных структурных уровней. Структура — это совокупность связей между элементами системы. Поэтому любая система состоит не только из подсистем и элементов, но и из разнообразных связей между ними. Внутри этих уровней главными являют ся горизонтальные (координационные) связи, а между уровнями — вертикальные (субординационные). Совокупность горизонтальных и вертикальных связей позволяет создать иерархическую структуру Вселенной, в которой основным квалификационным признаком является размер объекта и его масса, а также их соотношение с человеком. На основе этого критерия выделяют следующие уровни материи: микромир, макромир и мегамир.

Микромир — область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с. Сюда относятся поля, элементарные частицы, ядра, атомы и молекулы.

Макромир — мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах и километрах, а время — в секундах, минутах, часах, днях и годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности, т.е. макротелами.

Мегамир — сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов — миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты: звезды, галактики и их скопления.

На каждом из этих уровней действуют свои специфические закономерности, несводимые друг к другу. Хотя все эти три сферы мира теснейшим образом связаны между собой.

Структура мегамира

Основными структурными элементами мегамира являются планеты и планетные системы; звезды и звездные системы, образующие галактики; системы галактик, образующие метагалактики.

Планеты — несамосветящиеся небесные тела, по форме близкие к шару, вращающиеся вокруг звезд и отражающие их свет. В силу близости к Земле наиболее изученными являются планеты Солнечной системы, двигающиеся вокруг Солнца по эллиптическим орбитам. К этой группе планет относится и наша Земля, расположенная от Солнца на расстоянии 150 млн. км.

Звезды — светящиеся (газовые) космические объекты, образующиеся из газово-пылевой среды (преимущественно водорода и гелия) в результате гравитационной конденсации. Звезды удалены друг от друга на огромные расстояния и тем самым изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется силой тяготения, создаваемой всеми звездами Галактики. Число звезд в Галактике — порядка триллиона. Самые многочисленные из них — карлики, массы которых примерно в 10 раз меньше массы Солнца. В зависимости от массы звёзды в процессе эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

Белый карлик — это электронная постзвезда, образующаяся в том случае, когда звезда на последнем этапе своей эволюции имеет массу, меньшую 1,2 солнечной массы. Диаметр белого карлика равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность — 10 т/см3 , т.е. в сотни раз больше земной плотности.

Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. Высокие температура и давление в них создают условия для образования большого количества нейтронов. В этом случае происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурное протекание ядерных реакций. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Оставшийся объект и получил название нейтронной звезды, поскольку он состоит из протонов и нейтронов. Нейтронные звезды также называют пульсарами.

Черные дыры — это звезды, находящиеся на заключительном этапе своего развития, масса которых превышает 2 солнечные массы, и имеющие диаметр от 10 до 20 км. Теоретические расчеты показали, что они обладают гигантской массой (1015 г) и аномально сильным гравитационным полем. Свое название они получили потому, что не обладают свечением, а за счет своего гравитационного поля захватывают из пространства все космические тела и излучение, которые не могут выйти из них обратно, они как бы проваливаются в них (затягиваются, как в дыру). Из-за сильной гравитации никакое захваченное материальное тело не может выйти за пределы гравитационного радиуса объекта, и поэтому они кажутся наблюдателю «черными».

Звездные системы (звездные скопления) — группы звезд, связанные между собой силами тяготения, имеющие совместное происхождение, сходный химический состав и включающие в себя до сотен тысяч отдельных звезд. Существуют рассеянные звездные системы, например Плеяды в созвездии Тельца. Такие системы не имеют правильной формы. В настоящее время известно более тысячи

звездных систем. Кроме того, к звездным системам относятся шаровые звездные скопления, насчитывающие в своем составе сотни тысяч звезд. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время ученым известно около 150 шаровых скоплений.

Галактики — совокупности звездных скоплений. Понятие «галактика» в современной интерпретации означает огромные звездные системы. Этот термин (от греч. «молоко, молочный») был введен в обиход для обозначения нашей звездной системы, представляющей собой тянущуюся через все небо светлую полосу с молочным оттенком и поэтому названную Млечным Путем.

Условно по внешнему виду галактики можно разделить на три вида. К первому (около 80%) относятся спиральные галактики. У этого вида отчетливо наблюдаются ядро и спиральные «рукава». Второй вид (около 17%) включает эллиптические галактики, т.е. такие, которые имеют форму эллипса. К третьему виду (примерно 3%) относятся галактики неправильной формы, которые не имеют отчетливо выраженного ядра. Кроме того, галактики различаются размерами, числом входящих в них звезд и светимостью. Все галактики находятся в состоянии движения, причем расстояние между ними постоянно увеличивается, т.е. происходит взаимное удаление (разбегание) галактик друг от друга.

Наша Солнечная система принадлежит к галактике Млечного Пути, включающей не менее 100 млрд. звезд и поэтому относящейся к разряду гигантских галактик. Она имеет сплюснутую форму, в центре которой находится ядро с отходящими от него спиральными «рукавами». Диаметр нашей Галактики составляет около 100 тыс., а толщина — 10 тыс. световых лет. Соседней с нами является галактика Туманность Андромеды.

Метагалактика — система галактик, включающая все известные космические объекты.

Поскольку мегамир имеет дело с большими расстояниями, то для измерения этих расстояний разработаны следующие специальные единицы:

световой год — расстояние, которое проходит луч света в течение одного года со скоростью 300 000 км/с, т.е. световой год составляет 10 трлн км;

астрономическая единица — это среднее расстояние от Земли до Солнца, 1 а.е. равна 8,3 световым минутам. Это значит, что солнечные лучи, оторвавшись от Солнца, достигают Земли через 8,3 мин;

парсек — единица измерения космических расстояний внутри звездных систем и между ними. 1пк — 206 265 а.е., т.е. приблизительно равен 30 трлн км, или 3,3 световым года.

Структура макромира

Каждый структурный уровень материи в своем развитии подчиняется специфическим законам, но при этом между этими уровнями нет строгих и жестких границ, все они теснейшим образом связаны между собой. Границы микро- и макромира подвижны, не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов. Тем не менее, выделим важнейшие объекты макромира.

Центральным понятием макромира является понятие вещества, которое в классической физике, являющейся физикой макромира, отделяют от поля. Под веществом понимают вид материи, обладающий массой покоя. Оно существует для нас в виде физических тел, которые обладают некоторыми общими параметрами — удельной массой, температурой, теплоемкостью, механической прочностью или упругостью, тепло- и электропроводностью, магнитными свойствами и т.п. Все эти параметры могут изменяться в широких пределах как от одного вещества к другому, так и для одного и того же вещества в зависимости от внешних условий.