Смекни!
smekni.com

Роль мутации в эволюции живого (стр. 4 из 7)

Процесс отбора наиболее эффективен, когда он направлен против доминантных мутаций, при условии их полного проявления и выражения. В этих случаях при коэффициенте селекции, равном 1, популяция может избавиться от доминантных изменений всего лишь за одно поколение. Так, у человека имеется немало доминантных наследственных заболеваний, которые не позволяют из носителям иметь детей. Это в значительной мере касается, например, заболевания ахондроплазии (карликовость). Все мутантные особи этого рода оказывают очень малое влияние на генотипический состав популяции человека в следующем поколении.

В тех случаях, когда проявление вредного доминантного гена запаздывает и его носители успевают оставить потомство, они могут оказывать значительное неблагоприятное влияние на состав будущего поколения, полностью передавая наследственное заболевание своим потомкам. Для такого рода болезней возможно применение генетической профилактики. Зная наследствование этих заболеваний и зная трагическую участь детей, можно советовать отказаться от их рождения.

Отбор против рецессивных мутаций оказывается более трудным делом. Рассмотрим пример с аллелем альбинизма у человека. По статистическим данным, в Великобритании среди 20000 детей рождается один альбинос (0,00005). Концентрация аллеля альбинизма, следовательно, равна 0,007. Концентрация гена нормальной пигментации в этой популяции составляет 0,993. Эти данные позволяют рассчитать число гетерозигот, которое равно 1,38%. В такой популяции число гетерозигот (Аа) в 276 раз больше числа гомозигот.

Таким образом, характерным различием между отбором против доминантов и против рецессивов служит то, что в первом случае все аллели подвержены отбору, во втором только их небольшая часть. Для рецессивных мутаций существует обширная зона гетерозигот, пребывая в которой они ускользают от действия отбора. Поскольку зона гетерозигот гораздо шире зоны гомозигот по рецессивам, эффект отбора в этом случае оказывается очень затруднительным.

Рассмотрим наиболее благоприятный случай отрицательного отбора, когда коэффициент селекции равен 1, т. е. гомозиготы или гибнут или оказываются полностью стерильными. Возьмем в качестве исходной популяцию, где концентрация рецессивного аллеля составляет 0,5. Очевидно, что распределение генотипов в такой популяции будет иметь вид 25%АА+50%с+25%аа. Гетерозиготы (Аа) в этом случае встречаются в популяции в два раза чаще гомозигот (аа, АА).

При коэффициенте селекции, равном 1, потомство в такой популяции будет получаться только от особей АА и Аа. В табл. 1 показано, что такой отбор приведет во втором поколении к тому, что концентрация аллеля а упадет до 33%, а распределение генотипов примет вид: 44,44% АА+ 44,44% Аа+11,12% аа. В такой популяции число гетерозигот (Аа) в 4 раза превышает число гомозигот (аа).

Вначале действие отбора на такую популяцию, благодаря высокой исходной концентрации аллеля а, осуществляется вполне эффективно. За 9 поколений отбора (табл. 1) концентрация аллеля а уменьшается в 5 раз, с 50 до 10%. Однако возрастает зона недопустимости аллеля для отбора. На 9 поколении количество гетерозигот уже в 18 раз больше количества рецессивных гомозигот, в то время как в исходном поколении оно было больше всего лишь в два раза. Это резко затрудняет деятельность отбора. Так, для того чтобы уменьшить концентрацию аллеля а в два раза (от 0,020 до 0,010), необходимо уже 50 поколений отбора. В последнем из рассматриваемых, сотом поколении, количество гетерозигот (Аа) в 196 раз превышает число гомозигот (аа).

Разительные различия в эффективности отбора против доминантных мутаций и против рецессивных показаны на рис. 1. Как уже указывалось выше, при коэффициенте селекции, равном 1, все доминанты выбрасываются из популяции. При том же коэффициенте селекции против рецессивных гомозигот после 10 поколений отбора их число падает всего лишь в 4 раза. На рис. 1 показан ход падения числа гомозигот (аа) по всем 10 поколениям отбора.

Рассматривая процессы отбора по изменениям концентраций отдельных генов, мы упрощаем процессы, идущие при отборе в природе и при искусственной селекции. Реальный процесс отбора идет на уровне генотипов в целом (особей), а не на уровне отдельных аллелей. Эффекты такой селекции, которая может быть оценена по количественным признакам, более сложны и редко модифицируются средой. В этих случаях эффективность отбора во многом определяется степенью наследуемости признака. Во многих случаях выраженность количественных признаков (продуктивность, урожайность и т. д.) зависит от положительного влияния внешней среды. Та компонента признака, которая вызвана внешней средой и является модификационной, не передается по наследству. Такие модификации могут маскировать генотипические свойства особи и этим тормозить эффективный отбор. На рис. 2 представлен результат отбора в потомстве двух фенотипически одинаковых популяций. На левой части рисунка дан ход селекции при полной наследуемости признака. Правая половина рисунка иллюстрирует такой же отбор, но при 20%-ной наследуемости признака. Во всех поколениях отбирались особи с максимальным проявлением признака. Мы видим, насколько различны итоги селекции даже в пределах всего лишь первых 4 поколений.

3.3. Принципы динамического равновесия

между мутационным процессом и

естественным отбором.

Изменения в генетических структурах популяций всегда происходят под влиянием сложного комплекса эволюционных факторов. Очень важное значение имеет соотношение отбора и давления мутаций. Если данный аллель поддерживается отбором, тогда носители этого аллеля, будучи более приспособленными, характеризуются преимущественным размножением. В результате отбор вытесняет все другие аллели. Однако, как показывает элементарная теория, в этих условиях, но при наличии мутаций отбор не в состоянии целиком утвердить в популяции благоприятный аллель, т. е. концентрация такого аллеля никогда не достигнет 100%. В такой популяции, где мутации противоборствуют отбору, концентрация данного аллеля установится на том или ином равновесном уровне, отражая взаимодействие обоих факторов.

При наличии отбора против постоянно возникающих доминантных аллелей равновесие устанавливается на уровне, равном u/s(p=u/s). Для рецессивных аллелей состояние равновесия достигается на уровне q-4/s.*

У человека скорость мутирования по доминантному гену ахондроплазии (карликовости) u=4.2´10

. Но, поскольку не все карлики доживают до репродуктивного возраста и оставляют потомство, аномальный ген передается следующему поколению лишь с невысокой частотой. В Дании, например, она составляет 0,125. Эффективность передачи нормального аллеля у непораженных сибсов соответствует 0,64. Следовательно, селективная ценность аллеля ахондроплазии равна 0,125; 0,64 или ~ 20%. Очевидно, что в этом случае коэффициент селекции равен 0,8 (s= 0.8).

В каждой популяции содержится два класса генных мутаций. Одни из них – это мутации, заново появившиеся в этом поколении. Вторые – мутации, перешедшие из предыдущего или предыдущих поколений. Для гена А (ахондроплазия) 0,2 от u(0.2u) мутантов являются переданными из предыдущего поколения. Количество новых мутантов равно единице. В целом в популяции следует ожидать число гетерозигот (Аа), равное 1,2и. В каждом следующем поколении число гетерозигот должно возрастать за счет увеличения доли, передаваемой из предыдущего поколения. Однако это может происходить только до тех пор, пока число гибнущих при отборе генов не станет равным числу возмещения мутаций. Так возникнет генетическое равновесие.

3.4.Генотипическая изоляция и адаптация –

один из путей видообразования.

Конечно, внешняя среда играет важную роль в биологической дифференциации. Можно даже сказать, что если бы среда повсюду была совершенно одинаковой, то Земля, вероятно, была бы населена одним-единственным видом живых организмов. Однако, поскольку среда чрезвычайно разнообразна как в отношении климата, так и в отношении условий обитания, то это вызвало дифференциацию организмов и их приспособление к различной и изменяющейся среде.

Эта дифференциация подразумевает не только индивидуальное приспособление к среде, но также генотипическое приспособление, которое прежне всего осуществляется путем рекомбинации генов. Разделение на два разных пола и многие другие специальные механизмы обеспечивают постоянное поддержание рекомбинационной изменчивости.

Другое важное достижение генетики – установление того, что наряду с выраженным постоянством генов каждому организму свойственна определенная частота спонтанных мутаций. Новые гены или аллели возникают непрерывно и служат материалом для рекомбинаций.

Очень многие из мутантных генов не имеют значения для эволюции, т. к. их носители погибают в борьбу за существование. Однако некоторые из них оказываются благоприятными в том или ином отношении и могут после рекомбинаций дать организму преимущество для приспособления к новым условиям окружающей среды. Приспособление может состоять в том, что вид окажется в состоянии расширить область своего распространения, или же в том, что ареал вида сохраняет свои прежние границы, но вид становится выжить при измененных условиях среды, например при ухудшении климата. Этот процесс приспособления прежде всего связан с дифференциацией экотипов внутри видов. Настоящее образование новых видов начнется только в том случае, когда эта экологическая дифференциация будет сопровождаться возникновением преград между различными группами биотипов.