Смекни!
smekni.com

Концепции современного естествознания Гусейханов Раджабов (стр. 42 из 104)


порядок в системе увеличивается, т. е. где энтропия уменьшается.

Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. Процесс превращения одних веществ в другие называется химической реакцией. К условиям протекания химических процессов относятся прежде всего термодинамические факторы, характеризующие зависимость реакций от температуры, давления и некоторых других условий. На скорость химической реакции также влияют следующие условия и параметры:

1) природа реагирующих веществ (например, щелочные металлы растворяются в воде с образованием щелочей и выделением водорода и реакция протекает при обычных условиях моментально, а цинк, железо и другие реагируют медленно и с образованием оксидов, а благородные металлы не реагируют вообще);

2) температура. При повышении температуры на каждые 10 °С скорость реакции увеличивается в 2-4 раза (правило Вант-Гоффа). Со многими веществами кислород начинает реагировать с заметной скоростью уже при обыкновенной температуре (медленное окисление). При повышении температуры начинается бурная реакция (горение);

3) концентрация. Для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ. Горение веществ в чистом кислороде происходит интенсивнее, чем в воздухе, где концентрация кислорода почти в 5 раз меньше. Здесь справедлив закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ;

4) площадь поверхности реагирования. Для веществ в твердом состоянии скорость прямо пропорциональна поверхности реагирующих веществ. Железо и сера в твердом состоянии реагируют достаточно быстро лишь при предварительном измельчении и перемешивании: горение хвороста и полена;

214


5) катализатор. Скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, но сами при этом не расходуются. Разложение бертолетовой соли и пероксида водорода ускоряется в присутствии оксида марганца (IV) и др.

Для вступления в химическую реакцию необходимо преодолеть некоторый энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры. Многие реакции долгое время не могут закончиться. В таком случае говорят, что реакция достигла химического равновесия. Химическая система находится в состоянии равновесия, если выполняются следующие три условия:

1) в системе не происходит энергетических изменений (

Н = 0);

2) не происходит изменений степени беспорядка (,

S = 0);

3) не изменяется изобарный потенциал (

J = 0).

Вант-Тофф, используя термодинамический подход, классифицировал химические реакции, а также сформулировал основные положения химической кинетики. Химическая кинетика изучает скорости протекания химических реакций. Ле Шателье сформулировал закон смещения химического равновесия в химических реакциях под влиянием внешних факторов — температуры, давления и др. Согласно принципу Ле Шателье, если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие (изменяется температура, давление или концентрация), то положение равновесия химической реакции смещается в ту сторону, которая ослабляет данное воздействие.

Химические реакции классифицируют по изменению качества исходных веществ и продуктов реакции на следующие виды:

реакции соединения — реакции, при которых из нескольких веществ образуется одно вещество, более сложное, чем исходные;

реакции разложения — реакции, при которых из одного сложного вещества образуется несколько веществ;

реакции замещения — реакции, при которых атомы одного элемента замещают атом другого элемента в сложном веществе и при этом образуются два новых — простое и сложное;

реакции обмена — реакции, при которых реагирующие вещества обмениваются своими составными частями, в результате

215


чего из двух сложных веществ образуются два новых сложных вещества.

По тепловому эффекту химические реакции можно подразделить на экзотермические — с выделением теплоты и эндотермические — с поглощением теплоты. С учетом явления катализа реакции могут быть каталитические — с применением катализаторов и некаталитические — без применения катализаторов. По признаку обратимости реакции делят на обратимые и необратимые.

В. Оствальд, исследуя условия химического равновесия, пришел к открытию явления катализа. Оказалось, что в большой степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий. Явление катализа — селективного ускорения химических процессов в присутствии веществ (катализаторов), которые принимают участие в промежуточных процессах, но регенерируются в конце реакции, широко используется в промышленности, например фиксация азота и водорода, контактный способ производства серной кислоты и многие другие. Впервые синтез аммиака был осуществлен в 1918 г. на основе работ Габера, К. Боша и А. Митташа с помощью катализатора, представляющего собой металлическое железо с добавками окисей калия и алюминия, при температуре 450-550 °С и давлении 300-1000 атмосфер. В настоящее время большое внимание уделяют применению металлоорганических и металлокомплексных катализаторов, отличающихся высокими селективностью и избирательностью действия. Тот же самый процесс синтеза аммиака при использовании металлоорганического катализатора удалось осуществить при обычной температуре (18 °С) и нормальном атмосферном давлении, что открывает большие перспективы в производстве минеральных азотных удобрений. Особенно велика роль катализа в органическом синтезе. Крупнейшим успехом в этом направлении надо признать получение искусственного синтетического каучука из этилового спирта, осуществленное советским академиком С. В. Лебедевым в 20-х годах XX века.

216


Ферменты, или биокатализаторы, играют исключительную роль в биологических процессах и технологии веществ растительного и животного происхождения, а также в медицине. В настоящее время известно свыше 750 ферментов, и их число ежегодно увеличивается. Ферменты являются бифункциональными и полифункциональными катализаторами, так как здесь имеет место согласованное воздействие двух или нескольких групп катализаторов различной природы в составе активного центра фермента на поляризацию определенных связей субстрата. Эта же концепция лежит в основе каталитического действия фермента и теории кинетики действия ферментов. Главное отличие ферментов от других катализаторов заключается в исключительно высокой активности и ярко выраженной специфичности.

Самоорганизация химических систем в биологические, их единство и взаимосвязь подтверждает синтез органических соединений из неорганических. В 1824 г. немецкий химик Ф. Велер, ученик Берцелиуса, впервые получил из неорганического дициана N-C-C-N при нагревании его с водой щавелевую кислоту НООС-СООН — органическое соединение. Также было получено новое органическое вещество — мочевина (карбамид) из цианистого аммония. В 1854 г. во Франции М. Бертло синтетическим путем получил жир. Наибольшим успехом химии 50-60-х гг. XX в. явился первый синтез простых белков — гормона инсулина и фермента рибонуклерозы.

9.5. Эволюция химических систем и перспективы химии

Все наши значим прошлые, настоящие и будущие ничто по сравнению с тем, что мы никогда не узнаем.

К. Э. Циолковский

Под эволюцией химической системы понимают самопроизвольный синтез новых химических соединений, являющихся более сложными и более высокоорганизованными продуктами по

217


сравнению с исходными веществами. Химики сегодня пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем можно будет построить принципиально новую химию, новое управление химическими процессами, где начнут применять принципы синтеза себе подобных молекул. По принципу ферментов будут созданы катализаторы такой степени специфичности, что далеко превзойдут существующие в нашей промышленности. Хотя химия в настоящее время еще далека от решения этих проблем, но намечены следующие пути решения этой задачи:

1. Развитие исследований в области металлокомплексного катализа с постоянной ориентацией на соответствующие объекты живой природы. Сегодня металлокомплексный катализ постепенно обогащается такими приемами, которыми пользуются живые организмы в ферментативных реакциях, а также приемами классического гетерогенного катализа.

2. Освоение каталитического опыта живой природы, заключающегося в определенных успехах моделирования биокатализаторов. Для решения проблемы освоения каталитического опыта живой природы необходимо изучение законов химической эволюции и происхождения жизни.

3. Использование достижений иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая превращает последние в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие, т. е. осуществляется биоорганический катализ.

4. Развитие исследований, ориентированных на применение принципов биокатализа в химии и химической технологии. Характеризуется изучением и освоением всего каталитического опыта живой природы, в том числе и опыта формирования самого фермента, клетки и даже организма, т. е. это пролог к принципиально новой химической технологии, способной стать аналогом живых систем.