Смекни!
smekni.com

Биосинтез дезоксирибонуклеотидов (стр. 2 из 3)

Рисунок 4. Реакции фосфорилирования нуклеозидмонофосфата и нуклеозиддифосфата.

4. Синтез пуриновых дезоксирибонуклеотидов

Синтез пуриновых и пиримидиновых дезоксири­бонуклеотидов происходит путем прямого восста­новления 2'-углерода рибозного остатка соответ­ствующего рибонуклеотида, а не путем синтеза denovo из 2'-дезоксианалога ФРПФ. Восстановление 2'-углеродного атома рибозы происходит только после превращения пуриновых и пиримидиновых нуклео-тидов в соответствующие нуклеозиддифосфаты. У некоторых бактерий в этом восстановительном процессе участвует кобаламин (витамин В12). У жи­вотных процесс восстановления идет и в отсутствие витамина В12. Восстановление рибонуклеозиддифосфатов в дезоксирибонуклеозид-дифосфаты катали­зируется рибонуклеотидредуктазойи требует участия тиоредоксина(белковый кофактор), тиоредоксинредуктазы (флавопротеиновый фермент) и NADPH (кофактор). Непосредственным донором электронов для нуклеотида является тиоредоксин, который предварительно восстанавливается NADPH. Обра­тимое окислительно-восстановительное превраще­ние тиоредоксина катализируется тиоредоксинредуктазой. Восстановление рибонуклеозиддифосфата восстановленным тиоредоксином катализируется рибонуклеозидредуктазой (рис. 5). Эта сложная ферментная система функционирует в клетках толь­ко в период активного синтеза ДНК и деления.

Рисунок 5. Восстановление рибонуклеозиддифосфата до 2-дезокси-рибонуклеозиддифосфата.

5. Тканевая специфичность биосинтеза пуринов

Не во всех тканях человека происходит синтез пу­риновых нуклеотидов denovo. Эритроциты и полиморфноядерные лейкоциты не способны синтезиро­вать 5-фосфорибозиламин, и поэтому для образова­ния пуриновых нуклеотидов им необходимы экзо­генные пурины. Периферические лимфоциты способ­ны синтезировать небольшие количества пуринов denovo. Установлено, что в клетках мозга млекопи­тающих содержатся очень малые количества ФРПФ-амидотрансферазы, на этом основании был сделан вывод о зависимости синтеза пуриновых нуклеоти­дов в мозге от поступления экзогенных пуринов. Оказалось, что основным местом синтеза пурино­вых нуклеотидов в организме млекопитающих является печень. Из нее свободные основания или нуклеозиды попадают в другие ткани, не способные к синтезу пуринов denovo.

6. Регуляция биосинтеза пуринов

На синтез молекулы IMP затрачивается энергия гидролиза шести макроэргических фосфодиэфирных связей АТР, при этом в качестве предшественников выступают глицин, глутамин, метенилтетрагидрофолат и аспартат. Для экономии энергетических и питательных ресурсов важна эффективная регуля­ция процесса биосинтеза пуринов denovo. Важнейшую роль в этом процессе играет внутриклеточная концентрация ФРПФ. Она определяется соотноше­нием скоростей его синтеза, утилизации и деграда­ции. Скорость синтеза ФРПФ зависит от 1) наличия субстратов синтеза, особенно рибозо-5-фосфата, и 2) каталитической активности ФРПФ-синтазы, ко­торая в свою очередь связана с внутриклеточной концентрацией фосфатов, а также с концентрацией пуриновых и пиримидиновых рибонуклеотидов, вы­ступающих в роли аллостерических регуляторов (рис. 6). Скорость утилизации ФРПФ в значите­льной степени зависит от интенсивности цикла ре­утилизации пуриновых оснований, в ходе которого ксантин и гуанин фосфорибозилируются до соответ­ствующих рибонуклеотидов. В меньшей степени ско­рость утилизации ФРПФ зависит от интенсивности синтеза пуринов denovo. Этот вывод основан на сле­дующем наблюдении: в эритроцитах и культивируе­мых фибробластах мужчин с наследственным нару­шением активности гипоксантин-гуанин—фосфо-рибозилтрансферазы уровень ФРПФ повышается в несколько раз.

Рисунок 6. Регуляция скорости синтеза пуринов denovo. Сплошные линии указывают путь химических превраще­ний. Пунктирные линии обозна-чают ингибирование ко­нечными продуктами по принципу обратной связи.

Показано, что ФРПФ-амидотрансфераза – первый из ферментов, участ-вующих в процессе син­теза пуриновых нуклеотидов denovo, ингибируется invitro пуриновыми нуклеотидами (особенно аденозинмонофосфатом и гуанозинмонофосфатом) по принципу обратной связи. Эти ингибиторы конкури­руют с субстратом — ФРПФ, последний, как выясни­лось, занимает центральное место в регуляции син­теза пуринов denovo. Многие косвенные данные сви­детельствуют о том, что роль амидотрансферазы в этом процессе менее существенна, чем ФРПФ-синтетазы.

Образование GMP или AMP из IMP регули­руется двумя механизмами (рис. 7).

Рисунок 7.Регуляция превращений IMP в аденозиновые и гуанозиновые нуклеотиды. Сплошные линии указывают путь химических превращений. Пунктирные линии обозна­чают положительную и отрицательную регуляцию по принципу обратной связи.

AMP регу­лирует активность аденилосукцинатсинтетазы, влияя по принципу обратной связи на собственный синтез. GMP регулирует собственный синтез, дей­ствуя по тому же принципу на 1МР-дегидрогеназу. Наряду с этим образование аденилосукцината из IMP на пути к AMP стимулируется GTP. Образова­ние же GMP из ксантозинмонофосфата требует при­сутствия АТР. Таким образом, наблюдается суще­ственная перекрестная регуляция дивергентных пу­тей метаболизма IMP. Такая регуляция тормозит биосинтез одного из пуриновых нуклеотидов при не­достатке другого. Гипоксантингуанин-фосфорибозилтрансфераза, катализирующая образо-вание из ксантина и гуанина IMP и GMP соответствен­но, весьма чувствительна к ингибирующему дей­ствию этих нуклеотидов.

Восстановление рибонуклеозиддифосфатов до дезоксирибонуклеозид-дифосфатов является объек­том сложной регуляции. Этот процесс (рис. 8) обеспечивает сбалансированное образование дезоксирибонуклеотидов для синтеза ДНК.

Рисунок 8. Регуляция восстановления пуриновых и пиримидиновых рибонуклеотидов до соответствующих 2'-дезоксирибонуклеотидов. Сплошные линии указывают путь химических превращений. Пунктирные линии обозна­чают положительную и отрицательную регуляцию по принципу обратной связи.

7. Биосинтез пиримидинов

Структура ядра пиримидинов проще и путь их биосинтеза короче, чем у пуринов. В то же время оба пути имеют ряд общих предшественников. ФРПФ, глутамин, СО2 и аспартат необходимы для синтеза всех пиримидиновых и пуриновых нуклеотидов. Синтез тимидиновых нуклеотидов, а также всех пу­риновых нуждается в присутствии производных тетрагидрофолата. Можно отметить одно существен­ное различие в путях биосинтеза пуриновых и пири­мидиновых нуклеотидов. В первом случае синтез на­чинается с молекулы рибозофосфата как интеграль­ной части будущей молекулы предшественника нуклеотида, во втором случае сначала синтезируется пиримидиновое основание и только на последних стадиях присоединяется остаток рибозофосфата.

Синтез пиримидинового кольца (рис. 9) на­чинается с образования карбамоилфосфата из глутамина, АТР и СО2 в реакции, катализируемой в цитозоле карбамоилфосфатсинтазой (реакция 1). Отме­тим, что карбамоилфосфатсинтаза, ответственная за ранние стадии синтеза мочевины, локализована в митохондриях.

Первый уникальный для биосинтеза пиримиди­нов этап — образование карбамоиласпартата в реак­ции конденсации карбамоилфосфата и аспартата ка­тализируется аспартаттранскарбамоилазой (реакция 2). Затем в реакции, катализируемой дигидрооротазой, выщепляется Н2О и образуется кольцевая струк­тура (реакция 3).

На следующем этапе происходит дегидрогенирование под действием дигидрооротатдегидрогеназы с использованием NAD в качестве кофактора, при этом образуется оротовая кислота (реакция 4).

В реакции 5 к оротовой кислоте присоединяется остаток рибозофосфата с образованием оротидилата (оротидинмонофосфат, ОМР). Этот процесс осу­ществляется оротат-фосфорибозилгрансферазой — ферментом, аналогичным гипоксантин-гуанин—фосфорибозилтрансферазе и аденин-фосфорибозил-трансферазе, которые участвуют в фосфорибозилировании пуриновых колец.

Первый истинный пиримидиновый рибонуклеотид—уридилат (уридинмонофосфат, UMP) обра­зуется при декарбоксилировании оротидилата (реак­ция 6). Таким образом, только на предпоследней ста­дии образования UMP происходит фосфорибозилирование гетероцикла.

Дигидрооротатдегидрогеназа митохондриальный фермент. Все остальные ферменты, участву­ющие в синтезе пиримидинов denovo, локализуют­ся в цитозоле.

Фосфорилирование пиримидиновых нуклеозидмонофосфатов до соответствующих ди- и трифосфатов происходит аналогично тому, как это описано для пуриновых нуклеозидмонофосфатов (реакции 7—12). UTP аминируется до СТР; в реакции уча­ствуют глутамин и АТР (реакция 9). Механизм вос­становления пиримидиннуклеозиддифосфатов до со­ответствующих 2/-дезоксинуклеозиддифосфатов (реакция 10) также аналогичен тому, который описан для пуриновых нуклеозиддифосфатов (рис. 5 и 8).

Образование тимидилата (тимидинмонофосфат; ТМР) (реакция 12) — единственная реакция на пути биосинтеза пиримидиновых нуклеотидов, требую­щая участия производного тетрагидрофолата в каче­стве донора одноуглеродного фрагмента. 2'-Дезокси-UMP метилируется тимидилатсинтазой, использующей N5, N10-метилентетрагидрофолат как донор метильной группы.