Смекни!
smekni.com

Естествознание и философия. Диалектический и метафизический методы изучения природы (стр. 5 из 16)

14. Основные положения и следствия специальной теории относительности.

Важную роль в развитии естествознания сыг­рал принцип относительности, впервые сформулированный Г. Галилеем для механи­ческого движения, — механическое движение относительно, и его характер зависит от систе­мы отсчета.

А. Пуанкаре распространил принцип относи­тельности на все электромагнитные процессы, а А. Эйнштейн использовал его для специаль­ной теории относительности.

Современная формулировка принци­па относительности такова: все инерциальные системы отсчета равноправны между со­бой (неотличимы друг от друга) в отношении протекания физических процессов, или, дру­гими словами, физические процессы не за­висят от равномерного и прямолинейного дви­жения системы отсчета.

Специальная теория относительности, прин­ципы которой сформулировал в 1905 г. А, Эйнш­тейн, представляет современную физическую теорию пространства и времени. В основе спе­циальной теории относительности лежат посту­латы Эйнштейна:

1) принцип относительности: никакие опы­ты (механические, электрические, оптиче­ские), проведенные в данной инерциальной системе отсчета, не дают возможности об­наружить, покоится ли эта система или дви­жется равномерно и прямолинейно; все за­коны природы инвариантны по отношению к переходу от одной инерциальной системы к другой;

2) принцип постоянства скорости света: скорость света в вакууме не зависит от ско­рости движения света или наблюдателя и оди­накова во всех инерциальных системах от­счета.

Эйнштейн решает пересмотреть понятия прост­ранства и времени. Это приводит к относитель­ности понятия размеров тел, т.е. одно и то же тело имеет разную длину, если оно движется с разной скоростью относительно масштаба, с помощью которого она измеряется. Тоже со временем: промежуток времени, в течение ко­торого длится какой-либо процесс, различен, если измерять его часами движущимися с раз­личной скоростью. Таким образом, размеры тел и промежутки времени приобретают смысл от­носительных величин.

Используя теорию относительности, можно соединить понятия пространства и времени в единое четырехмерное пространство сущест­вования материи, если пространственные коор­динаты оставить прежними х1, х2, х3а четвертую координату представить в виде x1=ct,где с — скорость света, t — время, выраженное в обычных единицах.

В результате в один и тот же момент времени в одной и той же точке трехмерного простран­ства может находится только один объект, а в другой момент времени его можно заменить на другой. В одной и той же точке пространства может находиться много различных объектов, но в различные моменты времени, т.е. простран­ство вмещает больше объектов, чем кажется. Таким образом, определена неразрывная связь пространства и времени.

15. Корпускулярно-волновой дуализм материи.

В истории развития учения о свете сменяли друг друга корпускулярная теория света (Ньютон) и волновая (Р. Гук, Ч. Гюйгенс, Т. Юнг, Ж. Френель), представлявшая свет как механическую волну. В 70-х годах после утверждения теории Максвелла под светом стали понимать электромагнитную волну.

В начале 20-го века на основе экспериментов было неопровержимо доказано, что свет обладает как волновыми, так и корпускулярными свойствами. Было также обнаружено, что в проявлении этих свойств существуют вполне определенные закономерности: чем меньше длина волны, тем сильнее проявляются корпускулярные свойства света.

В 1924 г. французский физик Л. де Бройль выдвинул смелую гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс Р, обладают волновыми свойствами. Так в физике появилась знаменитая формула де Бройля

, где m – масса частицы, V – ее скорость, h – постоянная Планка.

В настоящее время волновые свойства микрочастиц находят широкое применение, например, в электронном микроскопе. Современные электронные микроскопы позволяют видеть молекулы и даже атомы вещества (увеличение в 105-106 раз).

При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность (диалектическое единство корпускулярных и волновых свойств материи).

По современным представлениям квантовый объект – это не частица, не волна, и даже не то и не другое одновременно. Квантовый объект – это нечто третье, не равное простой сумме свойств частицы и волны. Для выражения свойства квантового объекта у нас в языке просто нет соответствующих понятий. Но, поскольку сведения о микрообъекте, о его характеристиках мы получаем в результате взаимодействия его с прибором (макрообъектом), то и описывать этот микрообъект приходится в классических понятиях, т.е. используя понятия волны и частицы.

Принцип дополнительности. Итак, из сказанного выше следует, что корпускулярные и волновые свойства микрообъекта являются несовместимыми в отношении их одновременного проявления, однако они в равной мере характеризуют объект, т.е. дополняют друг друга. Эта идея была высказана Н. Бором и положена им в основу важнейшего методологического принципа современной науки, охватывающего в настоящее время не только физические науки, но и все естествознание – принципа дополнительности (1927). Суть принципа дополнительности по Н. Бору сводится к следующему: как бы далеко не выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий, совокупность которых дает наиболее полную информацию об этих явлениях как о целостных.

Важно отметить, что идея дополнительности рассматривалась Бором как выходящая за рамки чисто физического познания. Он считал (и эта точка зрения разделяется в настоящее время), что интерпретация квантовой механики «имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающих из разделения «субъекта и объекта».

Принцип дополнительности, как общий принцип познания может быть сформулирован следующим образом: всякое истинное явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий. К числу таких явлений относятся, например, квантовые явления, жизнь, психика и др. Бор, в частности, видел необходимость применения принципа дополнительности в биологии, что обусловлено чрезвычайно сложным строением и функциями живых организмов, которые обеспечивают им практически неисчерпаемые скрытые возможности.

16. Принцип неопределенности.

Принцип неопределённости – фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты её центра инерции и импульс одновременно принимают вполне определённые, точные значения. Количественно принцип неопределённости формулируется следующим образом. Если ∆x – неопределённость значения координаты x центра инерции системы, а ∆px – неопределённость проекции импульса p на ось x, то произведение этих неопределённостей должно быть по порядку величины не меньше постоянной Планка ħ. Аналогичные неравенства должны выполняться для любой пары т. н. канонически сопряженных переменных, например для координаты y и проекции импульса py на ось y, координаты z и проекции импульса pz. Если под неопределённостями координаты и импульса понимать среднеквадратичные отклонения этих физических величин от их средних значений, то принцип неопределённости для них имеет вид:

∆px ∆x ≥ ħ/2, ∆py ∆y ≥ ħ/2, ∆pz ∆z ≥ ħ/2

Ввиду малости ħ по сравнению с макроскопическими величинами той же размерности действие принципа неопределённости существенно в основном для явлений атомных (и меньших) масштабов и не проявляются в опытах с макроскопическими телами.

Из принципа неопределённости следует, что чем точнее определена одна из входящих в неравенство величин, тем менее определенно значение другой. Никакой эксперимент не может привести к одновременно точному измерению таких динамичных переменных; при этом неопределённость в измерениях связано не с несовершенством экспериментальной техники, а с объективными свойствами материи.

Принцип неопределённости, открытый в 1927 г. немецким физиком В. Гейзенбергом, явился важным этапом в выяснении закономерностей внутриатомных явлений и построении квантовой механики. Существенной чертой микроскопических объектов является их корпускулярно-волновая природа. Состояние частицы полностью определяется волновой функцией (величина, полностью описывающая состояние микрообъекта (электрона, протона, атома, молекулы) и вообще любой квантовой системы). Частица может быть обнаружена в любой точке пространства, в которой волновая функция отлична от нуля. Поэтому результаты экпериментов по определению, например, координаты имеют вероятностный характер.

Это и есть принцип неопределённости Гейзенберга. Он сыграл исключительно важную роль при построении математического аппарата для описания волн частиц в атомах. Его строгое толкование в опытах с электронами такого: подобно световым волнам электроны сопротивляются любым попыткам выполнить измерения с предельной точностью. Этот принцип меняет и картину атома Бора. Можно определить точно импульс электрона (а следовательно, и его уровень энергии) на какой-нибудь его орбите, но при этом его местонахождение будет абсолютно неизвестно: ничего нельзя сказать о том, где он находится. Отсюда ясно, что рисовать себе чёткую орбиту электрона и помечать его на ней в виде кружка лишено какого-либо смысла.)