Смекни!
smekni.com

Химические взаимодействия во Вселенной (стр. 2 из 3)

Принцип Паули объясняет, почему невозможно образование двухатомной молекулы гелия. Чтобы такая молекула, Не2 оказалась устойчивой, в обла­сти перекрывания должны находиться четыре электрона. Однако сущест­вуют только два направления спина, значит, только два электрона могут находиться между ядрами. Остальные электроны будут «растаскивать» яд­ра, и атомы разлетятся. Молекула не образуется. В перекрывании могут участвовать не только s-, но и другие орби­тали. Однако электронные облака атомов перекрываются и проникают друг в друга только в том случае, если они имеют близкие зна­чения энергии и одинаковую симметрию. Вот, например, фтор F, у атома которого электронная формула [Не] 2s22pK Каждый атом фтора имеет семь валентных электронов — так называют внешние электроны, способные образовывать химическую связь. |

Атомные орбитали, занятые парами электронов, даже валентных, не перекрываются по той же причине, что и орбитали атомов гелия. Однако каждый атом фтора имеет одну орбиталь с единственным (неспаренным) электроном — вот эти-то орбитали будут проникать друг в друга (перекры­ваться). В области перекрывания расположатся два электрона от двух ато­мов фтора, которые свяжут их в молекулу.

Могут перекрываться и разные орбитали. Именно так образуется связь в молекуле фтороводорода HF. Дело в том, что s-орбиталь атома водорода и p-орбиталь атома фтора имеют разную форму, но одинаковую симметрию: при вращении вокруг оси, соединяющей ядра атомов, они совпадают са­ми с собой. По одному электрону от обоих атомов располагаются в облас­ти перекрывания этих орбиталей. И вот пара электронов объединяет ато­мы водорода и фтора: получается молекула HF.

У сферических s-орбиталей существует только одна возможность для перекрывания, а вот p-орбитали могут пере­крываться разными способами. Один из них показан на примере молекулы фтора. При таком перекрывании образуется так называемая σ-связь. Но есть и другая возможность — перекрывание боковыми областями электронного облака. В этом случае образуется π-связь, которая зна­чительно слабее σ-связи и может возникнуть только в дополнение к ней. Для этого двум атомам надо иметь p-орбитали, которые могут уча­ствовать в перекрывании. Такая возможность есть у атомов кислорода. Электронная формула атома кислорода [Не] 2s22p4 и здесь валентными яв­ляются шесть электронов. Атом кислорода имеет на одной p-орбитали два электрона, а на оставшихся двух — по одному. Вот эти-то атомные орбитали с одиночными (неспаренными) электронами и участвуют в перекры­вании.

Две p-орбитали двух атомов кислорода, расположенные вдоль линии, соединяющей их ядра, перекрываются и образуют σ-связь. А p-орби­тали, перпендикулярные этой линии, создают дополнительную π-связь. Связь становится двойной, а участвуют в ее образовании две пары электронов. Как будто атомы кислорода протянули друг другу по две руки.

У атома азота N (его электронная формула — [Не] 2s22) из семи электронов валентными являются пять, три из которых располагаются поодиночке на трех p-орбиталях. При перекрывании электронных облаков двух ато­мов азота образуются одна σ- и две π-связи. Это уже тройная связь. Она отличается необычайной прочностью, и становится понятным, почему молекулы азота N2 с таким трудом вступают в химические реакции. А вообше-то иметь несколько орбиталей с неспаренными электронами удобно — можно образовать несколько связей с другими атомами. Вместо того чтобы использовать две связи на объединение друг с другом в молеку­ле О2 атом кислорода может присоединить к себе два атома водорода — получится молекула воды Н2О.

Механизм возникновения химической связи, при котором используется по одному электрону от каж­дого атома, называют обменным. Здесь все атомы как бы обмениваются своими электронами.

К примеру, если два человека обменяются яблоками, у каждого опять бу­дет по одному яблоку, а если они обменяются идеями, у каждого их будет по две. А если один из них большой выдумщик и у него уже есть две идеи, а у его партнера ни одной? Что ж, во время общения результат окажется тем же — у каждого по две идеи, которые станут общими. Вот и пара электронов в области перекрывания может появиться и при пе­рекрывании двух орбиталей — пустой и имеющей два электрона. Это донорно-акцепторный механизм образования химической связи: атом-до­нор безвозмездно отдает, а атом-акцептор принимает два спаренных элек­трона.

У молекул воды или аммиака имеются атомные орбитали, не участвующие в образовании связи. Электроны, находящиеся на таких орбиталях, назы­вают неподеленными — наверное, потому, что атом еще не успел ими по­делиться. У него появляется такая возможность, если он присоединит к себе частицу, имеющую свободную атомную орбиталь, например катион водорода Н+, вообще не имеющий электронов. При этом получается кати­он оксония Н3О+.

Таким образом на основе электромаг­нитных взаимодействий объясняются не только электрические и магнитные явления, но и оптические, и тепловые, и химические.

4. Слабое взаимодействие

Слабое взаимодействие, одно из фундаментальных взаимодействий, в котором участвуют все элементарные частицы (кроме фотона). Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но неизмеримо сильнее гравитационного. Ожидаемый радиус действия слабого взаимодействия порядка 2·10-16 см. Слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействия нейтрино с веществом и др. Для слабого взаимодействия характерно нарушение четности, странности, «очарования» и др. В кон. 60-х гг. создана единая теория слабого и электромагнитного взаимодействий (т. н. электрослабое взаимодействие).

Четность, квантовое число, характеризующее симметрию волновой функции физической системы или элементарной частицы при некоторых дискретных преобразованиях: если при таком преобразовании y не меняет знака, то четность положительна, если меняет, то четность отрицательна. Для абсолютно нейтральных частиц (или систем), которые тождественны своим античастицам, кроме четности пространственной, можно ввести понятия зарядовой четности и комбинированной четности (для остальных частиц замена их античастицами меняет саму волновую функцию).

Странность (S), целое (нулевое, положительное или отрицательное) квантовое число, характеризующее адроны. Странность частиц и античастиц противоположны по знаку. Адроны с S≠0 называются странными. Странность сохраняется в сильном и электромагнитном взаимодействиях, но нарушается (на 1) в слабом взаимодействии.

«Очарование» (чарм, шарм), квантовое число, характеризующее адроны (или кварки); сохраняется в сильном и электромагнитном взаимодействиях, но нарушается слабым взаимодействием. Частицы с ненулевым значением «очарование» называются «очарованными» частицами.

Слабое взаимодействие, например, управляет радиоактивным распадом.

Радиоактивный распад – это постепенное уменьшение числа ра­диоактивных атомов вещества при спонтанном ядерном распаде, в результате чего эти атомы из нестабильного состояния переходят в стабильное. Время, в течение которого распадается половина таких атомов, называется периодом полураспада. Процесс радиоактивно­го распада сопровождается испусканием альфа-частиц, нуклонов, электронов и гамма-лучей либо непосредственно из нестабильных атомных ядер, либо вследствие ядерной реакции.

Радиоактивный распад представляет собой естественный процесс, протекающий вокруг нас постоянно. Именно радиоактивный распад таких элементов, как уран, торий и калий, нагревает недра Земли. Внутренняя теплота ядра Земли также генерируется радиоактивным распадом элементов, образовавшихся в теле звезд и вошедших в со­став первобытной Земли вследствие Большого Взрыва. Эта же те­плота, в свою очередь, питает энергией тектоническую активность Земли.

Время, необходимое для распада (с вы­делением энергии) половины данного количества радиоактивного материала называется периодом полураспада. Атом распадается путем деления (или расщепления) атомного ядра, переходя из нестабильного состояния в стабильное. Все радиоактивные вещества стремятся со временем прийти в ста­бильное состояние, и этот процесс сопровождается испусканием ио­низирующего излучения. Период полураспада различных радиоактивных материалов варьирует от менее чем миллионной доли се­кунды до миллионов лет. Период полураспада какого-либо опреде­ленного вещества постоянен и не зависит от физических условий, таких, как давление или температура. Поэтому радиоактивность можно использовать для оценки интервалов времени, измеряя долю ядер, которая уже подверглась распаду. Например, измерив коли­чество углерода, оставшееся в ископаемых остатках, можно узнать, сколь давно этот ископаемый материал образовался.

Периоды полураспада радиоактивных веществ, представляющих наибольшую угрозу человечеству, не являются ни очень коротки­ми, ни очень долгими. Короткоживущие вещества теряют свою ак­тивность столь быстро, что не представляют опасности. Радиоактив­ность очень долгоживущих материалов уменьшается столь медленно, что вредное ионизирующее излучение от них практически безопасно.

5. Гравитационное взаимодействие

Гравитационное взаимодействие, универсальное (присущее всем видам материи) взаимодействие, самое слабое из фундаментальных взаимодействий элементарных частиц, имеет характер притяжения.

Если это взаимодействие относительно слабое и тела движутся медленно по сравнению со скоростью света в вакууме с, то справедлив закон всемирного тяготения Ньютона. В случае сильных полей и скоростей, сравнимых с c, необходимо пользоваться созданной А. Эйнштейном общей теорией относительности (ОТО), являющейся обобщением ньютоновской теории тяготения на основе специальной относительности теории. В основе ОТО лежит принцип эквивалентности — локальной неразличимости сил тяготения и сил инерции, возникающих при ускорении системы отсчета. Этот принцип проявляется в том, что в заданном поле тяготения тела любой массы и физической природы движутся одинаково при одинаковых начальных условиях. Теория Эйнштейна описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени (п.-в.); в свою очередь, эти свойства влияют на движение материи и другие физические процессы. В таком искривленном п.-в. движение тел «по инерции» (т. е. при отсутствии внешних сил, кроме гравитационных) происходит по геодезическим линиям, аналогичным прямым в неискривленном пространстве, но эти линии уже искривлены. В сильном поле тяготения геометрия обычного трехмерного пространства оказывается неевклидовой, а время течет медленнее, чем вне поля. Теория Эйнштейна предсказывает конечную скорость изменения поля тяготения, равную скорости света в вакууме (это изменение переносится в виде гравитационных волн), возможность возникновения черных дыр и др. Эксперименты подтверждают эффекты ОТО.