Смекни!
smekni.com

Химия пищевых веществ и питания человека (стр. 2 из 7)

(C6H10O5)n + nH2O = nC6H12O6

Серная кислота и йод окрашивают целлюлозу в синий цвет. Один же йод - только в коричневый цвет. Кроме целлюлозы, в состав клеточных оболочек входят еще несколько других углеводов, известных под общим именем гемицеллюлоз, извлекаемых из клеточных оболочек 1%-м раствором соляной или серной кислоты при нагревании. Один из относящихся сюда углеводов - парагалактан, дающий при гидратации галактозу. В клеточных оболочках имеются еще и другие гемицеллюлозы, дающие маннозу, арабинозу и ксилозу. С возрастом многие клеточные оболочки перестают давать реакцию на целлюлозу, потому что одни подвергаются одревеснению, другие опробковению и т. д. Почти чистой клетчаткой является хлопок, который идет на изготовление ткани. Целлюлоза древесины дает бумагу. Целлюлозу и ее эфиры используют для получения искусственного волокна (вискозный, ацетатный, медноаммиачный шелк, искусственная шерсть), пластмасс, кинофотопленок, лаков, бездымного пороха и т. д. Гликоген - основной запасной гомополисахарид человека и высших животных, иногда называемый животным крахмалом; построен из остатков a-D-глюкозы. В большинстве органов и тканей гликоген является энергетическим запасным материалом только для этого органа, но гликоген печени играет важнейшую роль в поддержании постоянства концентрации глюкозы в крови в организме в целом. Особенно высоко содержание гликогена именно в печени (до 6--8% и выше), а также в мышцах (до 2% и выше). В 100 мл крови здорового взрослого человека содержится около 3 мг гликогена. Встречается гликоген также в некоторых высших растениях, грибах, бактериях, дрожжах. Величина молярной массы гликогена колеблется в зависимости от вида животного, органа, физиологического состояния, времени года, способа выделения и составляет от 107 до 109 и более. Гликоген представляет собой белый аморфный порошок, растворимый в воде, оптически активен, раствор гликогена опалесцирует. Из раствора гликоген осаждается спиртом, ацетоном, танином, сульфатом аммония и др. Гликоген практически не обладает восстанавливающей (редуцирующей) способностью. Поэтому он устойчив к действию щелочей, под влиянием кислот гидролизуется сначала до декстринов, а при полном кислотном гидролизе - до глюкозы. Различные препараты гликогена окрашиваются йодом в красный (желто-бурый) цвет. Гликоген в клетках находится как в растворенном состоянии, так и в виде гранул. В цитоплазме гликоген быстро обменивается, и его содержание зависит от соотношения активностей ферментов синтезирующих (гликогенсинтетазы) и расщепляющих гликоген (фосфорилазы), а также от снабжения тканей глюкозой крови. Декстран (гомополисахарид) углевод C12H20O10 получаемый из крахмала путем нагревания до 210°, действием слабых кислот, действием фермента диастаза, находимого в проросших семенах. Декстран, стекловидное бесцветное вещество, не кристаллизующееся, при растирании дает белый порошок, не имеет ни вкуса, ни запаха, легко растворим в воде, растворы нейтральны. В спирте декстран не растворим, йодом не окрашивается. Главное применение декстрана в красильном производстве для сгущения красок и протрав. Применяется также для приготовления клеящих средств, а также в пищевой, легкой промышленности и литейном производстве. Пентозаны – целлюлозоподобные полисахариды, построенные из ксилозы, арабинозы и других пентоз. Особенно богаты пентозанами скорлупа орехов, подсолнухов, кукурузные кочерыжки, солома, рожь. Инулин – высокомолекулярный углевод, растворимый в воде, осаждающийся из водных растворов при добавлении спирта. Содержится в большом количестве в клубнях земляной груши и георгина, в корнях одуванчика, цикория, в артишоках. В этих растениях инулин заменяет крахмал.

1.1 Физиологическое значение углеводов

Роль углеводов в организме человека не ограничивается их значением как источника энергии. Эта группа веществ и их производные входят в состав разнообразных тканей и жидкостей, являясь пластическими материалами.[2] Соединительная ткань содержит мукополисахариды, в состав которых входят углеводы и их производные. Регуляторная функция углеводов разнообразна. Они противодействуют накоплению кетоновых тел при окислении жиров. Так, при нарушении обмена углеводов, например, при сахарном диабете, развивается ацидоз. Некоторые углеводы и их производные обладают биологической активностью, выполняя в организме специализированные функции. Например, гепарин предотвращает свертывание крови в сосудах, гиалурованная кислота препятствует проникновению бактерий через клеточную оболочку. Следует отметить важную роль углеводов в защитных реакциях организма, особенно протекающих в печени. Глюкороновая кислота соединяется с некоторыми токсическими веществами, образуя нетоксические сложные эфиры, которые, благодаря растворимости в воде, удаляются из организма с мочой. Углеводные запасы человека очень ограничены, содержание не превышает 1% массы тела. Суточная потребность человека в углеводах составляет 400 – 500 г., при этом примерно 80% приходится на крахмал. С точки зрения пищевой ценности, углеводы подразделяются на усвояемые и неусвояемые. Усвояемые углеводы – моно и олигосахариды, крахмал, гликоген. Неусваемые углеводы – целлюлоза, гемицеллюлоза, инулин, пектин, гумми, слизи. [2]

2. Химия пищевых веществ и питания человека

Пищевая химия – дисциплина, значение которой все возрастает. Знание основ пищевой химии даст возможность технологам решить один из важнейших вопросов современности - обеспечение населения планеты качественными продуктами питания. Пищевая химия основывается на достижениях фундаментальных дисциплин, науки о питании и теснейшим образом взаимодействуют с биотехнологией, микробиологией, широко использует в своей практике разнообразные методы исследования. В настоящее время это бурно развивающаяся отрасль знаний.[3]

2.2. Три основных принципа рационального питания.

1.Равновесие между поступающей с пищей энергией и энергией, расходуемой человеком во время жизнедеятельности, иначе говоря, баланс энергии.

2.Удовлетворение потребности организма человека в определенном количестве и соотношение пищевых веществ.

3.Соблюдение режима питания (определенное время приема пищи и определенное количество пищи при каждом прием).

Соблюдая эти принципы, необходимо иметь в виду два обязательных условия: рациональная кулинарная обработка продуктов, максимально сохраняющая пищевые вещества; соблюдение санитарно-гигиенических правил приготовления и хранения пищи. Вся необходимая организму человека энергия поступает из пищи. Процесс усвоения и использования в организме пищи чем-то схож с горением. Действительно, большая часть продуктов, в том числе углеводы и жиры, превращается в тепло (энергию), углекислый газ и воду. Только белок дает в организме ряд недоокисленных продуктов, выделяющихся с мочой (мочевина).[4] Поэтому вначале калорийность (т.е. способность выделять энергию) определяли в специальном приборе- калориметре, в котором легко учитывается выделение тепла. Оказалось, что в калориметре при сгорание в атмосфере кислорода 1 гр углеводов выделяется в среднем 4,3ккал. 1г жиров-9,45, 1г белков- 5,65 ккал. (1 ккал=4,184 к Дж.) Однако впоследствии выяснилось, что часть пищевых веществ в организме не усваивается (например, белки в среднем усваиваются на - 94 , углеводы – на 95,6%) и в том или ином виде удаляется с каловой массой. Кроме того, как отмечено выше, белки сгорают в организме не полностью.

Энергетическая ценность продуктов

Продукт Энергетическая ценность, ккал

Продукт

Энергетическая ценность, ккал
Хлеб ржаной 170 Молоко 59
Хлеб пшеничный 240 Масло сливочное 749
Пирожные 320-540 Сыр российский 371
Сахар 379 Треска отварная 78
Картофель отварной 82 Борщ 270
Яблоки 39 Котлеты говяжьи 220
Говядина отварная 254 Сок виноградный 54
Сосиски 220-230 Масло подсолнечное 899
яйца 63

В настоящее время считается, что 1 г белковой пищи дает 4 ккал, 1 г жиров – 9, а 1 г углеводов – 4 ккал. Таким образом, зная химический состав пищи, легко подсчитать, сколько энергетического материала получает человек в сутки. В нашей стране выпущены специальные таблицы химического состава основных пищевых продуктов, по которым можно рассчитать калорийность любого блюда, любого меню, любой диеты. Для примера приведем калорийность, или, как говорят теперь, энергетическую ценность некоторых продуктов (обычно она выражается в килокалориях на 100 г съедобной части продукта). Закон сохранения энергии является абсолютным, но действует и в живом организме, в том числе и в клетках человеческого тела. Поэтому нормальное питание предусматривает примерный баланс поступления энергии в соответствии с расходом на обеспечение нормальной жизнедеятельности. При кратковременном недостатке калорийной пищи организм частично расходует запасные вещества, главным образом углеводы (гликоген) и жир.[4] При кратковременном избытке пищи ее усвояемость, и утилизация уменьшаются, увеличиваются каловые массы и выделение мочи. При длительном недостатке энергетически ценной пищи организмом расходуются не только резервные углеводы и жиры, но и белки, что в первую очередь ведет к уменьшению массы скелетных мышц. В результате происходит общее ослабление организма. Специалисты установили, что имеются три группы энергозатрат в организме: во-первых, так называемый основной обмен, во-вторых, специфическое динамическое действие пищи и, в- третьих, мышечная деятельность. Поскольку в дальнейшем нам придется неоднократно сталкиваться с этими понятиями, объясним их.