Смекни!
smekni.com

Биология с основами экологии Пехов (стр. 32 из 152)

Полисахаридами, состоящими из большого количества моноса-харидов, и наиболее известными и биологически важными у растений являются целлюлоза и крахмал, которые состоят из монотонно повторяющихся остатков D-глюкозы. Являясь основным структурным элементом клеточных стенок, целлюлоза обеспечивает прочность клеток зеленых растений. Известен также полисаха-рид хитин, содержащийся в клеточных стенках грибов и в скелете членистоногих. Он обеспечивает прочность их скелета. Считают, что целлюлоза является самым распространненным углеводом среди всех углеводов, известных на Земле. Крахмал содержится в большом количестве в клубнях картофеля и семенах злаковых (особенно кукурузы и пшеницы). Он построен из двух полимеров D-глюкозы (а-амилазы и пектина). Крахмал является резервным углеводом в клетках растений. В клетках животных содержится полисахарид гликоген, который тоже состоит из очень большого количества остатков D-глюкозы. Накапливаясь в печени, мышцах и других органах, он является источником глюкозы, поступающей в кровь. Этот углевод обнаруживают также в грибах.

Полисахариды, гиалуроновая кислота и пектины создают прослойку между клетками животных и растений, соответственно. Такой полисахарид, как гепарин синтезируется клетками легких, печени и других тканей и секретируется в кровь.

Известны соединения, представляющие собой комплекс сахаров с белками. Например, небольшие олигосахаридные группы, прикрепляясь через 0-гликоидную связь к -ОН-группам остатков се-рина, треонина, оксилизина или через N-гликозидную связь к амидному азоту аспарагина формируют гликопротеиды, обладающие рядом биологических функций (ферментативных, структурных, регулирующих). Если концевое звено полисахарида ковален-тно присоединению О-гликоидной связи к сериновому остатку в белке, то образующееся сложное соединение называют пептидо-гликаном. Это соединение обладает структурной функцией.

Углеводы обладают структурной функцией, причем самым распространенным структурным углеводом является целлюлоза. Другими структурными углеводными элементами являются гликоза-миногликаны (кислые мукополисахариды) и протеогликаны.

Углеводы являются важнейшим источником энергии в организме, которая освобождается в результате окислительно-восстановительных реакций. Установлено, что окисление 1 г углевода сопровождается образованием энергии в количестве 4,2 ккал. Целлюлоза не переваривается в желудочно-кишечном тракте позвоночных из-за отсутствия гидролизующего фермента. Она переваривается лишь в организме жвачных животных (крупный и мелкий рогатый скот, верблюды, жирафы и другие). Что касается крахмала и гликогена, то в желудочно-кишечном тракте млекопитающих они легко расщепляются ферментами-амилазами. Гликоген в желудочно-кишечном тракте расщепляется до глюкозы и некоторого количества мальтозы, но в клетках животных он расщепляется гликогенфосфорилазой с образованием глюкозо-1-фосфата. Наконец, углеводы служат своеобразным питательным резервом клеток, запасаясь в них в виде гликогена в клетках животных и крахмала в клетках растений.

Липиды (от греч. lipos — жир), или жиры являются соединениями, состоящими из жирных кислот и глицерола. К этим липидам относят также жироподобные вещества (воска). Жирные кислоты — это органические кислоты. Наиболее встречаемыми жирными кислотами в жирах животных и растений являются пальмитиновая (CH3(CH2)15COOH), стеариновая (CH3(СH2)16COOH) и олеиновая (СН3-СН2)7СН-СН(СН2)7-СООН) жирные кислоты. Одна молекула глицерола и три молекулы жирной кислоты образуют одну молекулу липида и три молекулы воды. Например, стеарин образуется в результате реакции между одной молекулой глицерола и тремя молекулами стеариновой кислоты:

Для липидов характерно то, что они не растворимы в воде. Растворителями для них являются эфир, бензин, хлороформ и другие органические растворители.

Липиды встречаются почти во всех клетках, но в основном в небольших количествах, хотя некоторые клетки содержат эти соединения в очень больших количествах, доходящих до 90% их сухой массы. Они обнаруживаются в нервной ткани, мужских половых клетках, в семенах растений. В бараньем жире глицерол связан в основном со стеариновой кислотой, тогда как в говяжьем жире — с пальмитиновой и стеариновой кислотами. Напротив, в растительных маслах и жире лошади глицерол связан с олеиновой кислотой.

Липиды в сочетании с другими соединениями образуют более сложные соединения. Например, известны фосфолипиды (глицерол + жирная кислота + фосфатная группа), липопротеиды (комплексы липидов с белками) и другие. Названные выше липиды определяют в качестве омыляемых, т. к. нагревание их совместно со щелочами сопровождается их гидролизом с образованием мыл. Между тем известны липиды, не способные образовывать мыла. Эти липиды называют неомыляемыми или стероидами, среди которых наиболее распространенными являются стеролы (стероид-ные спирты). В тканях животных наиболее часто обнаруживается холестерол.

Липиды обладают рядом важнейших свойств в жизни клеток. Прежде всего, поскольку углеводы могут переводиться в липиды, то последние выполняют роль накопителей энергии, ибо окисление липидов сопровождается выделением энергии. Например, окисление 1 г жира сопровождается выделением энергии в количестве 9,5 ккал. При окислении образуются также углекислый газ и вода. Очень тонкий слой жира в плазматической мембране клеток выполняет защитную роль.

Очень важное значение в построении клеточных структур липиды приобрели в составе фосфолипидов, которые являются одним из основных строительных материалов мембран клеток. Важную биологическую роль в жизни клеток и организмов играют также липопротеиды. Липиды способны к запасанию в организмах в больших количествах и этим обеспечивают терморегуляцию организмов, являясь материалом для образования эндогенной воды в результате его окисления, что имеет важное значение для жизни многих животных пустынь (верблюды, мелкие млекопитающие). Являясь предшественниками в синтезе ряда гормонов, они принимают участие в регуляции важных функций организмов. Воска предохраняют кожу позвоночных от воды, у птиц они придают водоотталкивающие свойства перьям. У многих видов растений воска покрывают листья. Питаясь фитопланктоном, содержащим воска, киты и лососевые рыбы используют их в качестве главного источника липидов. Помимо соединений, рассмотренных в этом параграфе, в клетках содержатся также и другие соединения. Чтобы проявлялась каталитическая активность ферментов, для многих из них необходимо присутствие кофакторов небелковой природы, которые либо непосредственно участвуют в каталитическом процессе, либо являются промежуточными переносчиками функциональных групп от субстрата непосредственно к ферменту. Если кофакторами ферментов являются органические соединения, то их называют кофермента-ми. Предшественниками многих таких органических соединений (ко-ферментов) служат витамины, которые тоже являются органическими соединениями, присутствующими в небольших количествах в клетках растений и животных и попадающих в организм человека с пищей. К настоящему времени известно более 10 различных вята-минов, которые классифицируют на водорастворимые и жирорастворимые витамины. Водорастворимыми являются витамины B2 (тимин), B2 (рибофлавин), В6 (пиридоксин), В12 никотиновая, панто-теновая и фолиевая кислоты, биотин и витамин С (аскорбиновая кислота). Жирорастворимыми являются витамины А, Д, Е и К.

Водорастворимые витамины в качестве коферментов участвуют в катализировании многих реакций, в частности таких, как декарбоксилирование a-кетокислот (витамин В1), окислительно-восстановительных реакций (витамин В2, никотиновая кислота), реакций гидроксилирования (витамин С), карбоксилирования (витамин К), переносе ацильных (пантотеиновая кислота) и многих других реакций.

Жирорастворимые витамины выполняют самые различные функции. В частности витамин А принимает участие в формировании зрительного процесса в виде альдегида витамина А, связанного с белком опсином, витамин Д регулирует обмен кальция, витамин Е участвует в защите липидов клеточных мембран от разрушения кислородом, а витамин К является кофактором реакций карбоксилирования.

Кофакторами ферментов являются также микроэлементы. В частности, для каталитического действия многих ферментов (цитохромоксидазы, каталазы, пероксидазы) необходимы ионы железа. Для действия цитохромоксидазы и лизиноксидазы необходима медь. Ионы Zn2+ присутствуют в НАД- и НАДФ-зависимых дегидрогена-зах. Другим ферментам необходимы ионы марганца (аргиназа), никеля (уреаза) или атомы молибдена и ванадия (флавиндегидрогена-зы). Некоторые микроэлементы участвуют в регуляторных реакциях. Например, хром участвует в регуляции усвоения глюкозы клетками животных тканей, а олово необходимо для кальцификации костей. Бор и алюминий необходимы для развития растений.

Наконец, в клетках в очень небольших количествах встречаются аминокислоты в свободном состоянии (свыше 150), которые не встречаются в составе белков.

§18 Размножение клеток

Размножение или пролиферация (от лат. proles — потомство, ferre — нести) клеток — это процесс, который приводит к росту и обновлению клеток. Данный процесс характерен как для одноклеточных, так и многоклеточных организмов.

Клетки-организмы (одноклеточные организмы) размножаются простым делением надвое (бактерии, саркодовые), множественным делением (споровики и др.) или другим путем. Поэтому у бактерий и одноклеточных животных удвоение клеток представляет собой размножение их как самостоятельных организмов, поскольку из исходной формы (организма) образуется две новые клетки, каждая из которых является организмом. Каждая дочерняя клетка (организм) получает полную генетическую информацию, несомую исходной клеткой-организмом.