Смекни!
smekni.com

Биология с основами экологии Пехов (стр. 62 из 152)

Факторы переноса обладают лишь генами репликации и переноса. Благодаря генам репликации такие плазмиды способны к бесконечно долгому поддержанию и воспроизводству в автономном (экстрахромосомном) состоянии, а благодаря генам переноса — к передаче

от одних клеток к другим, часто преодолевая в скрещиваниях видовые и родовые барьеры. Бактерии, содержащие плазмиды этого типа, служат генетическими донорами. Они способны вступать в скрещивания с клетками, не содержащими плазмиды.

Коинтегративные плазмиды представляют собой фактор генетического переноса, сцепленный с генами, контролирующими синтез тех или иных белков, имеющих значение для бактерий. Например, плазмиды R контролируют синтез ферментов, придающих бактериям устойчивость к антибиотикам, сульфани-ламидам и другим лекарственным веществам, плазмиды Ent — синтез энтеротоксинов, Col — колицинов, Hly — гемолизинов. Известны также плазмиды, контролирующие разрушение многих органических соединений и др. свойства. Благодаря фактору переноса эти плазмиды конъюгативны.

Неконъюгативные плазмиды — это плазмиды, которые не передаются от одних клеток к другим, т. к. они не обладают фактором переноса. Они тоже детерминируют лекарственную устойчивость и другие свойства бактерий. Передача неконъюгативных плазмид от одних бактерий к другим обеспечивается содержащимися в клетках факторами переноса или коинтегративными плазмидами, которые мобилизуют их на перенос. Среди эукариотов плазмиды идентифицированы у низших грибов. Одна из таких плазмид у дрожжей S. cerevisiae представляет собой кольцевые молекулы ДНК размером в 6318 пар оснований, существующие в количестве 80 копий на гаплоидный геном и кодирующие белки, необходимые для собственной репликации и рекомбинации. У нейроспоры (Neurospora) плазмиды обнаружены в виде малых кольцевых молекул ДНК размером 4200-5200 пар оснований, встречающихся в количестве около 100 копий на гаплоидный геном, а у плесени Aspergilus niger — в виде кольцевых молекул ДНК размером около 13 500 пар оснований в количестве около 100 копий на клетку.

ДНК органелл. ДНК этого класса обнаружена в случае как низших, так и высших эукариотов.

Молекулы ДНК, выделяемые из митохондрий соматических клеток животных и хлоропластов клеток растений, характеризуются небольшими размерами. Например, размеры молекул ДНК (гено-мов) митохондрий (мтДНК) разных животных (включая плоских червей, насекомых и млекопитающих), составляют 15 700—20 000, человека — 16 569 пар азотистых оснований. У простейших, например у трипаносом и парамеций, митохондриальный геном равен 22 000 и 40 000 пар оснований. Геном хлоропластов у высших растений составляет 12 000 — 200 000 пар оснований, у дрожжей — 78 000 пар оснований, у зеленых водорослей — 180 000 азотистых оснований. Во многих случаях показано, что ДНК митохондрий и хлоропластов сплошь состоит из нуклеотидных последовательностей, гомологичных последовательностям хромосомной ДНК.

Митохондриальный геном человека состоит из 13 генов, нукле-отидная последовательность которых определена и для которой характерно полное или почти полное отсутствие некодирующих участков. Эти гены кодируют собственные рибосомные РНК (12S- и 168-рРНК.) и 22 разные транспортные РНК, а также разные поли-пептиды, включая субъединичные компоненты I, II, III оксидазы цитохрома С, субъединицы 6 АТФазы, цитохрома В и девяти других белков, функции которых не известны.

Геном хлоропластов ряда высших растений состоит из 120 генов. Они кодируют 4 рибосомных РНК, 30 рибосомных белков, часть субъединиц хлоропластной РНК-полимеразы, часть белков, содержащихся в фотосистемах I и II, белковые субъединицы АТФ-синтетазы и отдельных ферментов цепи транспорта электронов, а также белковую субъединицу рибулозобисфосфаткарбоксидазы и очень многих тРНК. Хлоропластный геном очень сходен с бактериальным геномом как по организации, так и по функциям. В митохондриальном геноме человека, вероятно, отсутствуют интроны, но в ДНК хлоропластов некоторых высших растений, а также в ДНК митохондрий грибов интроны обнаружены. Считают, что хлоропластные геномы высших растений остаются без изменений примерно несколько миллионов лет. Возможно, что такая древность характерна и для митохондриальных геномов млекопитающих, включая человека.

Характер передачи мтДНК по наследству у разных организмов различен. Например, у дрожжей в результате одинакового вклада мтДНК сливающимися гаплоидными клетками в зиготу митохондриальный геном наследуется потомством от обоих родителей. Между тем показано, что у D. melanogaster и мышей мтДНК передается по материнской линии. По данным посемейного распределения ДНК в больших семьях предполагают, что мтДНК у человека также наследуется по материнской линии. Однако у морских голубых двустворчатых раковин из рода Mytilus она передается как по материнской, так и по мужской линии, причем тип передачи зависит от пола потомства. Женские митохондрий передаются матерями сыновьям и дочерям, тогда как мужские митохондрий передаются отцами сыновьям. Но у этих животных иногда встречается и передача женских митохондрий от отцов к дочерям. У большинства высших растений ДНК хлоропластов тоже наследуется по материнской линии.

ДНК, обнаруживаемая в кинетопластах трипаносом, представлена малыми (2,500 п. о.) и крупными (3700 п. о.) кольцевыми молекулами.

ДНК амплифицированных генов. Эта ДНК встречается в форме экстрахромосомных кольцевых молекул. Например, когда эука-риотические клетки культивируют в средах с лекарственными веществами, то происходит селекция резистентных клеток с повышенным количеством копий гена, контролирующего резистен-тность. Клетки многих опухолей содержат также экстрахромосомные амплифицированные гены (наряду с хромосомными).

Малые полидисперсные кольцевые и линейные ДНК. Молекулы ДНК этого типа (мпкДНК) имеют размеры от нескольких сот до десятков тысяч нуклеотидных пар и встречаются как в цитозоле, так и в ядре и митохондриях клеток многих организмов-эукариотов. Эти молекулы ДНК происходят или связаны с ДНК хромосом и органелл. Многие из этих молекул ДНК способны к транспозиции (см. § 45).

§ 45 Транспортируемые генетические элементы

Транспозируемые (подвижные, мигрирующие, транслоцируемые) генетические элементы —это сегменты ДНК, способные к перемещению в пределах одного генома или с одного генома на другой.

У прокариотов Транспозируемые генетические элементы представлены сегментами ДНК двух типов — инсерционными последовательностями (IS) и транспозонами (Тп).

Инсерционные последовательности ДНК представляют собой последовательности, состоящие из 768-5000 пар азотистых оснований. Они обнаружены в плазмидах, фагах, бактериальных хромосомах, причем встречаются так часто, что многие исследователи считают их нормальными компонентами бактерий. Инсерционные последовательности (IS1, IS2, IS4, IS5, IS102 и др.) в большинстве своем многокопийны. Они перемещаются с высокой частотой. Их миграция происходит на основе генетической рекомбинации.

Транспозоны организованы значительно сложнее, нежели ин-серционные последовательности (рис. 109). В упрощенном виде можно сказать, что транспозон представляет собой сегмент ДНК, середина которого представлена геном или генами устойчивости, а фланги — инсерционными последовательностями, обеспечивающими его передвижение. Размеры транспозонов — 2000-20 500 пар азотистых оснований. Для транспозонов характерны значительные инвертированные повторы.

Транспозируемые элементы клеток-прокариот перемещаются по маршруту хромосома ® плазмида ® другая плазмида ® хромосома. Перемещение транспозонов обеспечивается специализированным репликативным процессом, который не связан с генерацией экстрахромосомных форм. В экспериментальных условиях любой транспозон можно включить практически в любую плазмиду.

Генетические элементы, сходные с транспозируемыми, существуют также в клетках эукариотов, где они представлены разными повторяющимися последовательностями ДНК. Одни из этих элементов транспозируются в результате повторного включения (реинсерции) в геном продукта реверсивной транскрипции (копии РНК). Такие элементы получили название ретроэлементов. Напротив, другие элементы транспозируются прямо через копии ДНК.

Наиболее известными ретроэлементами являются ретротранс-позоны с короткими терминальными повторами. Такими являются ретротранспозоны I или R2 у дрозофил, Line — у млекопитающих, ingi — у трипаносом. Копии этих ретротранспозонов кодируют белки, необходимые для обратной транскрипции, т. е. их транспозиция осуществляется с использованием РНК в качестве интермедиата. К этой категории ретроэлементов принадлежат также последовательности с длинными терминальными повторами, в частности последовательности copia и gypsi у дрозофил, TY-фактор дрожжей и LI — элементы у млекопитающих. У этих последовательностей повторы достигают 500 пар оснований. Наконец, ретротранспозонами многие считают также последовательности, которые, помимо инсерционной способности, обладают инфицирующими свойствами, например, отдельные ретровирусы (лейкоза птиц, лейкемии млекопитающих, иммунодефицита млекопитающих).

Элементы, которые сходны по транспозиции с транспозоном, транспозируются прямо через копии ДНК, характеризуются инвертированными терминальными повторами и открытыми рамками чтения, кодирующими фермент Транспозоны. К таким элементам принадлежат транспозоны Р и hobo у дрозофил, Ас, ДЗ и Мм — у растений кукурузы, Тс/1 — у нематод, TU — у морских ежей.