Смекни!
smekni.com

Исторический очерк биохимии (стр. 1 из 3)

Контрольная работа

Павлодарский государственный университет им. С. Торайгырова

2005

Исторический очерк биохимии.

Как самостоятельная наука биохимия сформировалась на рубеже XIX – XX веков. До середины XIX века биохимия существовала как раздел физиологии и называлась физиологическая химия. Однако накопление фактического материала в области строения биологических структур, а также идентификация простейших метаболических процессов сыграли значительную роль в становлении биохимии как самостоятельной науки.

Бурное развитие органической химии в первой трети XIX века оказало огромное влияние на формирование структурной биохимии. Точкой отсчёта можно считать 1826 год, когда Ф. Вёллер сообщил о первом синтезе органического вещества – мочевины из аммиака и циановой кислоты. Спустя 70 лет Э. Бухнер показал, что экстракты дрожжевых клеток переваривают крахмал, так же эффективно, как и живые дрожжевые клетки. Обе эти работы нанесли существенный удар по витализму – учению, согласно которому химические вещества живой природы синтезируются только с помощью особой жизненной силы, и дали мощный импульс дальнейшему развитию биохимии. Так, в 50 – х годах XIX века М. Бертло удалось синтезировать целый ряд органических соединений, свойственных живой природе. М. Шеврель заложил основы химии липидов, а Ф. Мишер открыл нуклеиновые кислоты, положив начало изучению этого класса веществ. Однако наибольший вклад в развитие структурной биохимии внёс Э. Фишер своими блестящими работами по анализу аминокислот, жиров и липидов.

Исследования процессов метаболизма также началось на рубеже XIX века. На основе открытого М.В. Ломоносовым закона сохранения материи и накопившихся к концу XVIII века экспериментальных данных французского учённого А. Лавуазье количественно исследовавший и объяснивший сущность дыхания, отметив роль кислорода в этом процессе. Работы Лавуазье стимулировали исследования по энергетике метаболизма и уже в начале XIX века были определены количество теплоты при сгорании 1 г. жиров, белков и углеводов. Примерно в это же время, работали Дж. Присли и Я. Ингенхуза был открыт процесс фотосинтеза. Из живых объектов К. Шесле выделил ряд органических кислот, Д. Руэль – мочевину, Ф. Конради – холестерин.

В XX веке большое число открытий привело к подлинному рассвету биохимии. Фундаментальные исследования в области энзимологии, химии белков, липидов, углеводов, идентификация молекулярных механизмов основных обменных процессов, а также структур и функций генома, вывели биохимию на уровень основной количественной биологической науки. Велика роль российских учёных в становлении и развитии биохимии. Приоритетные исследования белков и аминокислот (А.Я. Данилевский, С.С. Салазкин, М.В. Ненцкий и другие); витаминов (Н.И. Лунин, К.А. Сосик, В.В. Пашутин); тканевого дыхания (А.Н.Бах, В.И. Палладин); трансаминирования аминокислот (А.Е. Браунштейн) ; механизмов механохимического сопряжения (В.А. Энгельчардт) ; химии нуклеиновых кислот и механизмов биосинтеза белка (А.Н. Белозёрский, А.С. Спирин) ; биоэнергетике (В.П. Скулачёв); структуры и функции генома (Г.П. Георгиев) и работы других российских учёных внесли огромный вклад в современную биохимию.

Биологическая биохимия изучает различные структуры, свойственных живым организмам, и химические реакции, протекающие на клеточном и организменном уровнях. Основой жизни является совокупность химических реакций, обеспечивающих обмен веществ. Таким образом, биохимию можно считать основным языком всех биологических наук. В настоящее время как биологические структуры, так и обменные процессы, благодаря применению эффективных методов, изучены достаточно хорошо. Многие разделы биохимии в последние годы развивались столь интенсивно, что выросли в самостоятельные научные направления и дисциплины. Прежде всего можно отметить биотехнологию, генную инженерию, биохимическую генетику, экологическую биохимию, квантовую и космическую биохимию и так далее. Велика роль биохимии в понимании сути патологических процессов и молекулярных механизмов действия лекарственных веществ.

Общая характеристика витамина А. Биохимические функции. Авитаминоз.

Витамин А был открыт Н. Друшмандом в 1916 году. Этому открытию предшествовали наблюдения о наличии жирорастворимого фактора в пище, необходимого для нормального развития сельскохозяйственных животных. В дальнейшем было установлено, что имеется три витамина группы А: ретинол, или витамин А1, неоретинол – стереоизомер А1 и А2. Этот витамин необходим не только животным, но и человеку, и при его дефиците у человека появляются заболевания глаз – ксерофтальмия и гемералопия. Витамин группы А содержится только в животных продуктах, таких, как печень, рыбий жир, сливочное масло и других. В растительной пищи содержаться поратинойды, способные предупреждать А – авитаминоз. При поступлении в организм человека или животных они под влиянием фермента каротиназы превращаются в витамин А1. Ретинол представляет собой непредельный одноатомный спирт, состоящий из бета – ионного кольца, а также боковой цепи, содержащей два остатка изопрена и первичную спиртовую группу:

Витамин А – ретинол.

Витамин А2 отличается от ретинола наличием дополнительной двойной связью в бета – ионном кольце. Потребность человека в витамине А составляет 1,5 мг.

Витамин А и соответствующие провитамины – каротиноиды широко распространены в природе и находятся в основном в животных организмах.

Витамин А поступая в организм как в свободном, так и в эстерифицированном виде. Свободный ретинол сорбируется слизистой кишечника, а его эфиры сначала гидролизуются при помощи фермента гидролазы эфиров карбоновых кислот. На внутренней поверхности ворсинок кишечника происходит ресинтез эфиров ретинола, которые затем поступают в кровь или лимфу. В лимфе более 90 % витамина А находится в эстерифицированном состоянии. В крови витамин А связывается со специфическим ретинолом – связывающим белком, а затем депонируется в печени. Благодаря этому концентрация витамина А в сыворотке крови более или менее постоянна даже при некотором дефиците этого витамина в пище.

Витамин А в организме осуществляет разнообразные функции. Вскоре после открытия была установлена его необходимость для нормального роста, а также для процесса сперматогенеза. В дальнейшем было показано, что витамин А необходим для нормального эмбрионального развития, а его окислённая форма – ретиновая кислота – контролирует ростовые процессы. Биохимическая основа действия витамина А чаще всего связанна с влиянием на проницаемость клеточных мембран. С помощью радиоизотопной технике было установлено также, что витамин А сорбируется на мембранах эндоплазматического ретикулума, влияя на созревание и транспорт секреторных белков. Велика роль витамина А в фотохимических процессах зрения. В зрительном акте можно выделить изменение конформации пигментов под действием кванта света, формирование нервного импульса, а также релаксацию пигмента в исходное состояние. Пигмент, состоящий из ретиналя и белка опсина, называется родопсином, при замене ретиналя на гидроретиналь образуется порфиропсин. Пигменты локализованы в колбочках, расположенных в мембране сетчатки. При фотохимической реакции происходит поглощение квантов световой энергии зрительным пигментом – родопсином. Родопсин, который в качестве хромофора содержит 11 – цис – ретиналь, под действием света превращается в нестабильный продукт лумиродопсин. При этом происходит изменение конформации молекулы родопсина, которые инициирует формирование нервного импульса передающегося в мозг. Затем в результате фотоизомеризации образуется полный транс – ретиналь, который в конечном счёте распадается на транс – ретиналь и белок опсин. В результате действия фермента ретиналь изомеразы полный транс – ретиналь, который в темноте взаимодействует с опсином и регенерирует родопсин.

Среди заболеваний у людей, особенно в детском возрасте, связанных с недостатком витамина, гипо – и авитаминоз А встречаются относительно часто. Они обусловлены недостаточным поступлением витамина А с пищей или нарушением резорбции и обмена этого витамина ( эндогенное происхождение ).

По данным ВОЗ в мире ежегодно наблюдается не менее 100000 случаев ксерофтальмии. Наиболее частой причиной слепоты в Южной и Восточной Азии является перенесённая в детстве ксерофтальмия.

В НРБ клиническое появление авитаминоза А – явление крайне редкое.

У здоровых людей при смешанной диете потребности в витамине А обычно удовлетворяются. Пища, бедная животными белками, как правило, бедна и ретинолом. Поэтому гипо – и авитаминоз А сопровождается недостаточностью белков и гипотрофией.

Растительная пища, а главным образом зеленолистые овощи, как и овощи и фрукты жёлто – оранжевого цвета, к которым относятся морковь, абрикосы, шиповник, перец, помидоры и другие, содержат только провитамин А. Из каротиноидов витамин А – активностью обладают только бета – каротины ( приблизительно равна 1/6 активности ретинола ). Активность выражается в международных единицах: 1 МЕ витамин А = 0,3 мкг. Ретинола или 0,6 мкг. бета – каротина. Резорбция и превращение β – каротина в витамин А осуществляется в клетках кишечной мукозы, откуда по лимфатическому пути переносится и депонируется в печени. Посредством специфического транспортного белка ретинол переносится из печени к месту действия – клетке.

Подобно резорбции нейтральных жиров, витамин А в кишечнике нарушается при отсутствии панкреатической липазы и желчи, а также при нарушении функции слизистой оболочки кишечника, целиакии, целиакоподобном синдроме, фиброзе поджелудочной железы, циррозе печени, обтурационной желтухе, мальабсорбционном синдроме и некоторых также острых инфекционных заболеваниях. К последним относятся: сепсис, тяжёлая пневмония или тяжёлый гломерулонефрит, а также некоторые интоксикации с поражением печени. В следствии увеличенной экскреции гиповитаминоз А возможен и при хронических инфекционных заболеваниях и инфекциях мочевых путей.