Смекни!
smekni.com

Анализ и оценка качества некоторых молокосодержащих продуктов (стр. 3 из 4)

Таблица 2

Пределы изменения входных факторов

Условия планирования Предел изменения факторов
х1, °С х2, мин х3 х4
основной уровень 40,0 40,0 1:8 5,4
интервал варьирования 10,0 15,0 1:24 2,0
верхний уровень 50,0 55,0 1:6 7,4
нижний уровень 30,0 25,0 1:12 3,4
верхняя «звездная точка» 60,0 70,0 5:24 9,4
нижняя «звездная точка» 20,0 10,0 1:24 1,4

Для построения математической модели применены центральное композиционное ротатабельное униформ-планирование и полный факторный эксперимент 24 (ПФЭ24).

Получено уравнение регрессии, адекватно описывающее процесс экстрагирования под влиянием исследуемых факторов:

Y = 7,565 + 0,131X1 + 0,056X2 + 0,103X3 – 0,198 X4 +

+ 0,065X1X2 + 0,079X2X3 + 0,274X3X4 – 0,157X12 .

Анализ уравнения регрессии позволяет сделать вывод, что на экстрагирование в большей степени влияют рН экстрагента и температура. Знаки « – » и «+» перед соответствующими коэффициентами означают, что снижение рН и повышение температуры приводят к возрастанию общего содержания сухих веществ в экстракте (Y).

Для установления оптимальных условий экстрагирования применяли «ридж-анализ», основанный на методе неопределенных множителей Лагранжа.

Оптимальные параметры экстрагирования пищевых компонентов стевии ультрафильтратом сыворотки: температура – 40 0С; продолжительность экстрагирования – 40 мин; соотношение объемов твердой и жидкой фаз – 1 : 10; рН экстрагента – 4,4 .

В экстракте методом ВЭЖХ идентифицированы 4 дитерпеновых гликозида. Результаты определения дитерпеновых гликозидов и других пищевых компонентов стевии в экстракте, а также в ультрафильтрате сыворотки приведены в табл. 3.

Таблица 3

Содержание дитерпеновых гликозидов и других пищевых

компонентов в экстракте стевии

Пищевые компоненты Массовая доля, г / 100 г
ультрафильтрат сыворотки экстракт после очистки
сухие вещества 5,70 9,27
аминокислоты 0,06 0,11
флавоноиды - 1,95
лактоза 3,70 3,50
свободные сахара(глюкоза+галактоза) - 1,04
дитерпеновые гликозиды сладкого вкуса, в т.ч.стевиозид,ребаудиозид А,ребаудиозид С,дулкозид ---- 0,520,110,050,03
минеральные соединения, в т.ч.кальций,фосфор 0,100,05 0,100,05
витамины, в т.ч.В1В2Е 0,0000270,0001460,000170 0,0000180,0000870,000120

Применение ультрафильтрата сыворотки в качестве экстрагента дитерпеновых гликозидов и других пищевых компонентов стевии позволяет получить экстракт, содержащий ценные вещества сыворотки и стевии (табл. 3). В экстракте повышается содержание всех аминокислот, кроме гистидина и триптофана (рис. 3), в бóльшей степени в экстракт переходит глутаминовая кислота (кратность увеличения содержания – более 400 %), поэтому можно заключить, что ее содержание максимально среди 17 аминокислот, входящих в состав листьев стевии; содержание кальция и фосфора остается постоянным, витаминов В1, В2 и Е – снижается на 33,3, 40,5 и 29,4 % вследствие их частичного перехода в твердую фазу, оставшуюся после экстрагирования.

Рис. 3. Содержание аминокислот в ультрафильтрате и экстракте из листьев стевии: аргинин (1), лизин (2), тирозин (3), фенилаланин (4), гистидин (5), лейцин (6), изолейцин (7), метионин (8), валин (9), пролин (10), треонин (11), серин (12), аланин (13), глицин (14), глутаминовая кислота (15), аспарагиновая кислота (16), цистин (17).

В главе 5 приведены экспрессные и легковыполнимые методики оценки качества некоторых молокосодержащих продуктов (творожная сыворотка, ультрафильтрат, экстракт стевии). Для оценки органолептических характеристик сыворотки, ультрафильтрата и экстракта стевии применяли разработанную мультисенсорную систему на основе 9 модифицированных пьезокварцевых резонаторов.

Аналитические сигналы пьезосенсоров матрицы при их одновременном экспонировании в парах равновесной газовой фазы анализируемого продукта фиксируются 9-канальным цифровым измерительным комплексом с интервалом 1 с, группируются в

общий (интегральный) выходной сигнал мультисенсорной системы, который формирует узнаваемый «визуальный образ» запаха

– «лепестковую» диаграмму с осями DF, Гц. Для расчета площади «визуального образа» применяли специально разработанное программное обеспечение «Анализ потока данных».

В идентичных условиях (20 ± 1 0С) через 2 ч после выработки по результатам анализа получены «визуальные образы» аромата сыворотки, ультрафильтрата и экстракта (рис. 4).

Рис. 4. «Визуальные образы» аромата сыворотки (а), ультрафильтрата (б)

и экстракта стевии (в) после 5 с сорбции

«Визуальные образы» аромата сыворотки и ультрафильтрата идентичны по форме, что подтверждает единую природу запаха, но различаются по площади. Площадь «визуального образа» сыворотки 3450 ± 150 усл.ед., ультрафильтрата – 1866 ± 80 усл.ед., т.е. запах ультрафильтрата менее интенсивен по сравнению с сывороткой. Аромат экстракта стевии формируют как легколетучие вещества сыворотки – полярные соединения, так и ароматобразующие компоненты листьев стевии – полярные (например, производные коричной кислоты) и неполярные (сексвитерпеновые углеводороды) соединения, что приводит к ослаблению, маскированию и модификации специфического сывороточного запаха. «Визуальный образ» аромата экстракта из листьев стевии (рис. 4) резко отличается по форме от «визуальных образов» ароматов сыворотки и ультрафильтрата.

Качество пищевых продуктов меняется непрерывно, для каждого из них установлено время, в течение которого сохраняются на допустимом уровне органолептические и физико-химические показатели, определяющие качество продуктов. Динамику изменения качества оценивают с применением органолептических, титриметрических, физико-химических и микробиологических методов, а также математического моделирования.

Для оценки динамики изменения качества и установления сроков хранения пробы сыворотки, ультрафильтрата и экстракта стевии хранили при 6 ± 2 оC. Через 12 ч анализировали многокомпонентную парогазовую смесь ароматобразующих веществ, строили «визуальные образы» запаха каждого продукта и рассчитывали их площади. Содержание ароматобразующих веществ при хранении продуктов повышается, их количественные соотношения изменяются, что существенно влияет на площадь «визуальных образов» (рис. 5).


Рис. 5. Зависимость площадей «визуальных образов»

аромата сыворотки (а) и экстракта стевии (б)

от продолжительности хранения продуктов

Установленная зависимость изменения площади «визуаль-

ного образа» многокомпонентной парогазовой смеси ароматобра-

зующих веществ анализируемых продуктов (рис. 5) от продолжительности хранения позволяет сделать вывод о динамике измене-

ния их качества, сроках хранения и пригодности продуктов к потреблению. Для анализируемых продуктов характерны аналогич-

ные зависимости изменения площади «визуального образа» аромата от продолжительности хранения: резкое возрастание пло-

щади «визуального образа» отмечается на 3-ьи сутки хранения сыворотки, 6-ые сутки – ультрафильтрата и 10-ые сутки – экстракта стевии (рис. 5). Затем площади «визуальных образов» изменяются значительно медленнее (продукт непригоден к потреблению).

Одновременно оценивали динамику изменения качества продуктов с применением титриметрического, потенциометрического и микробиологического методов. При этом определяли титруемую (К, 0Т) и активную (рН) кислотность проб продуктов, а также общую микробиологическую обсемененность (количество мезофильных анаэробных и факультативно анаэробных микроорганизмов, колоний образующих единиц/г; КМАФАнМ, КОЕ/г·10 – 4). Эти показатели обусловливают качество анализируемых продуктов; как пример приводим данные для творожной сыворотки (рис. 6 и 7). Для творожной сыворотки, пригодной к потреблению, титруемая кислотность не должна превышать

75 0Т, общая микробиологическая обсемененность – 1×105 КОЕ/г, рН не менее 3,7. Этим требованиям удовлетворяет сыворотка со сроком хранения до 3-х суток (рис. 6 и 7).


Рис. 6. Изменение активной (а) и титруемой (б) кислотности

при хранении сыворотки