Смекни!
smekni.com

Электрохимические методы защиты металлов от коррозии (стр. 2 из 6)

На рис.1 изображены анодная а и катодная к поляризационные кривые для данного металла в растворе определенного состава и для данного окислителя на поверхности того же металла. Наклон кривых а и к определяет кинетику процесса. Таким образом, рисунок содержит сведения о термодинамической возможности коррозии данного металла некоторым окислителем и о скорости этого процесса, определяемой кинетикой реакций (1) и (2), т.е. зависимостью их скоростей от смещения соответствующих потенциалов от равновесного значения. Коррозия возможна только в том случае, если

. Если
и
или
, то окисление металла невозможно (рис.2 ).

Рис. 3. Поляризационные кривые, отвечающие случаю, когда

; при этом
и коррозия металла данным окислителем невозможна.

Легко понять, что при данном

скорость коррозии может быть различной, если поляризационные кривые а и к идут с различными наклонами. Та кривая, которая отвечает более высокому перенапряжению (идет более полого), будет определять в основном скорость процесса. Так, при большом перенапряжении реакции (2) получим случай так называемого катодного контроля, когда кинетика определяется скоростью катодной реакции; при этом
близок к
. При большом перенапряжении реакции (1) получим анодный контроль; при этом
близок к
(рис.3).

Рис. 4. Коррозионные диаграммы, отвечающие катодному контролю (А) и анодному контролю (Б).

Рассматривая рис.1 и 3, мы видим, что окислитель, восстанавливаясь, заставляет потенциал металла сдвинуться от равновесного в сторону более положительных значений. Можно, сказать, что металл поляризован окислителем, если под поляризацией понимать навязывание электроду потенциала, отличного от равновесного. И не совсем понятно, почему в современной литературе, особенно коррозионной, окислитель часто называют деполяризатором. Так, коррозию в кислотах, когда металл окисляется ионами Н+, навязывающими ему потенциал более положительный, чем равновесный, называют «коррозией с водородной деполяризацией», коррозию при окислении металла кислородом – «коррозией с водородной деполяризацией». Мы останавливаемся на этом мелком вопросе потому, что название «деполяризатор» вместо «окислитель» искажает химическую природу явления. Окислитель поляризует металл, сообщая ему сверх равновесного потенциала некоторую величину

, вызывающую окисление, а не снижает
, т.е. не деполяризует металл.

Другие способы изображения коррозионных диаграмм

Применяемый в этой главе способ рассмотрения процессов коррозии при помощи поляризационных диаграмм весьма распространен. В том виде, в котором мы его использовали выше, он был предложен К. Вагнером и В. Траудом и подробно разработан А. М. Шультиным Способ этот характеризуется тем, что анодный и катодный токи, выражающие скорость противоположных по химическому смыслу процессов, откладываются в противоположные стороны от оси абсцисс. По оси абсцисс откладывается потенциал.

Однако весьма распространен и другой метод, предложенный Ю. Р. Эвансом, при котором ток, измеряющий скорость окисления и восстановления, откладывается в одном направлении и принимается за аргумент (абсцисса). Потенциал (ордината) откладывается так, что иногда вверх растет положительное значение, а иногда – отрицательное

Легко убедиться, что все способы изображения коррозионных диаграмм по существу равноценны. Дальше мы будем использовать различные способы изображения, для того чтобы научиться разбираться и в тех, и в других.

Методы защиты металлов от коррозии.

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Любой метод защиты изменяет ход коррозионного процесса, либо уменьшая скорость, либо прекращая его полностью. Коррозионные диаграммы, наиболее полно характеризующие коррозионный процесс, должны отражать и те изменения в ходе протекания, какие наблюдаются в условиях защиты. Коррозионные диаграммы можно использовать, поэтому при разработке возможных путей предохранения металлов от коррозии. Они служат основой для выяснения принципиальных особенностей того или иного метода. В связи с этим при рассмотрении существующих методов защиты поляризационные диаграммы будут использованы в их несколько упрощенном виде (4). На таких диаграммах постулируется линейная зависимость между плотностью и потенциалом каждой частной реакции. Это упрощение оказывается вполне допустимым при качественной оценке особенностей большинства методов

Эффективность защиты выражают через коэффициент торможения γ или степень защиты Z. Коэффициент торможения показывает, во сколько раз уменьшается скорость коррозии в результате применения данного способа защиты

где

и

- скорость коррозии до и после защиты. Степень защиты указывает, насколько полно удалось подавить коррозию благодаря применению этого метода:

или

Катодная защита

Из всех методов защиты основанных на изменении электрохимических свойств металла под действием поляризующего тока, наибольшее распространение получила защита металлов при наложении на них катодной поляризации (катодная защита). При смещении потенциала металла в сторону более электроотрицательных значений (по сравнению с величиной стационарного потенциала коррозии) скорость катодной реакции увеличивается, а скорость анодной падает (см. рис. 4). Если при стационарном потенциале

соблюдалосьравенство

,

то при более отрицательном значении

это равенство нарушается:

причем

.

Рис. 5. Поляризационная диаграмма коррозионного процесса.

Уменьшение скорости анодной реакции при катодной поляризации эквивалентно уменьшению скорости коррозии. Коэффициент торможения при выбранном потенциале j/ (см.рис.4) будет равен двум

=
=
=2,

а степень защиты достигает 50%

=

=
.