Смекни!
smekni.com

Белки (стр. 2 из 2)

Защитная. Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

Сократительная. Благодаря скольжению относительно друг друга актиновых и миозиновых протофибрилл происходит сокращение мышц, а также немышечные внутриклеточные сокращения. Движение ресничек и жгутиков связано со скольжением относительно друг друга микротрубочек, имеющих белковую природу.

Регуляторная. Многие гормоны являются олигопептидами или бедками (например, инсулин, глюкагон [антагонист инсулина], адренокортикотропный гормон и др.).

Рецепторная. Некоторые белки, встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку. Примером может служить фито-хром —- светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин — составная часть родопсина, пигмента, находящегося в клетках сетчатки глаза.

Энергетическая. Белки могут служить источником энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

Ферменты (энзимы). Это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при определенной температуре, нормальном давлении и соответствующей кислотности среды. В таких условиях реакции синтеза или распада веществ протекали бы в клетке очень медленно, если бы они не подвергались воздействиям ферментов. Ферменты ускоряют реакцию без изменения ее общего результата за счет снижения энергии активации, т. е. при их присутствии требуется значительно меньше энергии для придания реакционной способности молекулам, которые вступают в реакцию, или реакция идет по другому пути с меньшим энергетическим барьером.

Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Например, под их действием составные компоненты пищи (белки, углеводы, липиды и др.) расщепляются до более простых соединений, а из них уже затем синтезируются новые, свойственные данному виду макромолекулы. Поэтому нарушения образования и активности ферментов нередко ведут к возникновению тяжелых болезней.

По пространственной организации ферменты состоят из нескольких пол и пептидных цепей и обычно обладают четвертичной структурой. Кроме того, ферменты могут включать и небелковые структуры. Белковая часть носит название апофермент, а небелковая — кофактор (если это катионы или анионы неорганических веществ, например, Zn2- Мп2+и т. д.) или кофермент (коэнзим) (если это низкомолекулярное органическое вещество).

Предшественниками или составными частями Многих кофер-ментов являются витамины. Так, пантотеновая кислота — составная часть коэнзима А, никотиновая кислота (витамин РР) — предшественник НАД и НАДФ и т. д.

Ферментативный катализ подчиняется тем же законам, что и неферментативный катализ в химической промышленности, однако в отличие от него характеризуется необычайно высокой степенью специфичности (фермент катализирует только одну реакцию или действует только на один тип связи). Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и др.), протекающих в клетке и организме. Например, фермент уреаза катализирует расщепление лишь одного вещества — мочевины (H2N-CO-NH2 + Н2 О —> —» 2NH 3 + СО2), не оказывая каталитического действия на структурно-родственные соединения.

Для понимания механизма действия ферментов, обладающих высокой специфичностью, очень важна теория активного центра. Согласно ей, в молекуле каждого фермента имеется одни участок или более, в которых происходит катализ за счет тесного (во многих точках) контакта между молекулами фермента и специфического вещества (субстрата). Активным центром выступает или функциональная группа (например, ОН-группа серина), или отдельная аминокислота. Обычно же для каталитического действия необходимо сочетание нескольких (в среднем от 3 до 12) расположенных в определенном порядке аминокислотных остатков. Активный центр также формируется связанными с ферментом ионами металлов, витаминами и другими соединениями небелковой природы — коферментами, или кофакторами. Причем форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их идеального соответствия (взаимодополняемости или. комплементарности) друг другу. Роль остальных аминокислотных остатков в крупной молекуле фермента состоит в том, чтобы обеспечить его молекуле соответствующую глобулярную форму, которая нужна для эффективной работы активного центра. Кроме того, вокруг крупной молекулы фермента возникает сильное электрическое поле. В таком поле становится возможной ориентация молекул субстрата и приобретение ими асимметричной формы. Это приводит к ослаблению химических связей, и катализируемая реакция происходит с меньшей начальной затратой энергии, а следовательно, с намного большей скоростью. Например, одна молекула фермента каталазы может расщепить за 1 мин более 5 млн. молекул пероксида водорода (Н202), который возникает при окислении в организме различных соединений.

У некоторых ферментов в присутствии субстрата конфигурация активного центра претерпевает изменения, т. е. фермент ориентирует свои функциональные группы таким образом, чтобы обеспечить наибольшую каталитическую активность.

На заключительном этапе химической реакции фермент-субстратный комплекс разъединяется с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр может принимать новые молекулы субстрата.

Скорость ферментативных реакций зависит от многих факторов: природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т. д. Например, при температурах, близких к нулю, скорость биохимических реакций замедляется до минимума. Это свойство широко используется в различных отраслях народного хозяйства, особен-но в сельском хозяйстве и медицине. В частности, консервация различных органов (почек, сердца, селезенки, печени) перед их пересадкой больному происходит при охлаждении с целью снижения интенсивности биохимических реакций и продления времени жизни органов. Быстрое замораживание пищевых продуктов предотвращает рост и размножение микроорганизмов (бактерий, грибов и др.), атакже инактивирует их пищеварительные ферменты, так что они оказываются уже не в состоянии вызвать разложение пищевых продуктов.

Список литературы

Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"