Смекни!
smekni.com

Организация и применение микропроцессорных систем обработки данных и управления (стр. 3 из 7)

Магистраль адресов

В простой микропроцессорной системе только микропроцессор может вырабатывать адреса передаваемой в системе информации. Поэтому магистраль адресов (МА) – однонаправленная: микропроцессор генерирует сигналы кода адреса, а остальные устройства, подключенные к МА, только могут воспринимать их, выполняя непрерывно микрооперацию опознания кода адреса.

Количество шин магистрали адресов совпадает с разрядностью передаваемого кода адреса. Если используется 16-разрядный код, то в системе разрешается выработка

=65536 адресов. Они могут все относиться к адресам ячеек памяти или к адресам ячеек памяти и адресам регистров данных устройств ввода-вывода.

Магистраль данных

Микропроцессор, а также ОЗУ, ВЗУ, дисплеи могут воспринимать или передавать данные. Другие устройства могут либо только принимать данные, например устройство печати, либо только выдавать их, например ПЗУ.

Чтобы обеспечить все возможности системы, магистраль данных является двунаправленной. Ее разрядность определяется разрядностью микропроцессора и равна 2, 4, 8, 16 и 32 бит. Если в микропроцессоре обрабатываются данные по программам двойной разрядности, то двойное слово пересылается за два цикла, т.е. имеет место временное мультиплексирование (оно также применялось в нескольких первых микропроцессорах, когда использовалась общая магистраль адресов и данных).

Магистраль управления

Микропроцессор и некоторые шины устройств ввода-вывода генерируют управляющие сигналы, предназначенные для синхронизации и определения операций устройств. Эти сигналы передаются по совокупности однонаправленных шин, в целом образующих магистраль сигналов управления (МУ). Все сигналы управления в электронной системе согласованы с системными сигналами синхронизации. Эти сигналы задают начало и последовательность срабатывания, как различных устройств системы, так и различных блоков и узлов внутри всех кристаллов БИС. Для задания главной последовательности синхронизирующих импульсов, как правило, применяется внешний кварц или генератор на его основе. Выдаваемые микропроцессором сигналы синхронизации бывают однофазными, реже двухфазными.

Каждый микропроцессор имеет уникальную систему сигналов управления. Поэтому конкретное описание всех шин МУ, так же как и цоколевки выводов корпуса, дается в технической документации на конкретный микропроцессор. Тем не менее, практически все микропроцессоры имеют общие сигналы. Среди них – сигнал “Сброс” – входной сигнал, вырабатываемый на пульте управления системы. Он приводит к сбросу всех внутренних регистров микропроцессора и загрузке счетчика команд – узла, определяющего последовательность выполнения команд программы, начальным значением адреса, где записана первая команда программы.

Важнейшая управляющая функция микропроцессора – определение потоков данных в системе. Микропроцессор вызывает слова команд из памяти в процессе их чтения, обращается в память за операндами или к внешним устройствам за новыми данными, может записать результат операции в память или, сформировав массив данных, определить необходимость их вывода на внешние устройства. Когда микропроцессор посылает данные какому-то устройству, происходит операция записи данных, а когда получает данные от какого-то устройства, то считывает данные из его информационного регистра и выполняет операцию чтения данных. Чтобы задать направление передачи данных по МД, микропроцессор генерирует сигналы “Чтение/запись”, передаваемые по одной из шин МУ.

Специфика устройств ввода-вывода данных такова, что информация может быть потеряна, если МП своевременно не осуществит операцию с устройством. Поэтому эти устройства генерируют сигналы “Запрос прерывания процессора”, обращающие внимание микропроцессора на состояние готовности (или неисправности). Микропроцессор имеет вход для приема, по крайней мере, одного сигнала “Запрос прерывания процессора”. Если же запрос принимается, то МП информирует систему, вырабатывая ответный сигнал “Запрос прерывания удовлетворен”.

Разная скорость работы устройства ввода-вывода и микропроцессора порождает необходимость приостановки процессора на время подготовки данных во внешнем устройстве. Поэтому режим работы ожидание микропроцессора определяется внешним сигналом “Данные подготовлены (данные не подготовлены)”. Всего в МУ передается до десятка (и более) разнообразных сигналов управления.

Преобразователи интерфейсов

Когда необходимо перейти от одного вида интерфейса к другому, применяют специальные аппаратурные средства в виде преобразователя интерфейсов и интерфейсного контроллера. При построении микропроцессорных систем наиболее часто осуществляются преобразования, связанные с разными форматами электронных сигналов.

Все МП обрабатывают цифровые данные, представленные в параллельной форме. В этом случае разряды слов данных передаются одновременно по информационной магистрали и обрабатываются параллельно во всех разрядах АЛБ микропроцессора, поэтому внутри электронной системы все передачи данных также производятся в параллельном формате. Но в периферийной части электронных систем могут быть разнообразные форматы информационных сигналов, среди которых наиболее важными являются аналоговые и цифровые последовательные

Аналого-цифровые и цифро-аналоговые преобразователи в виде БИС решают задачи преобразования аналоговых сигналов в параллельные коды и наоборот. Развитие управляющих средств этих преобразователей позволяет не только существенно упростить их интерфейс с МП, но практически обеспечить прямое соединение без дополнительных аппаратурных средств. Данные в последовательном цифровом формате передаются по одной информационной шине, что существенно снижает количество связей в периферийной части систем, в случаях, когда не требуется осуществлять сопряжение с периферийными быстродействующими устройствами. Эти данные могут прямо вводиться (или выводиться) в МП, для чего необходимо разработать программные модули приема и преобразования форматов данных с соответствующей синхронизацией МП и внешних устройств. Временные затраты и низкая эффективность такого решения могут быть преодолены переходом к аппаратурной реализации системы ввода-вывода данных на основе использования специальных БИС контроллеров – преобразователей форматов данных, которые получили название универсальных асинхронных приемников-передатчиков.

Асинхронная передача данных означает, что приемник (например, МП) и передатчик (например, телетайп) осуществляют связь в условиях, когда каждый имеет свою собственную систему синхронизации, поэтому передатчик посылает свои данные в любой момент, не сообразуясь с временным состоянием приемника. В приемнике должны быть предусмотрены средства анализа и вхождения во “временное зацепление”, т.е. средства синхронизации своей работы с работой передатчика.

Формат последовательных информационных сигналов

Последовательные информационные сигналы формируются в виде “1” или “0” уровней тока (напряжения), значения которых сохраняются постоянными в течение периода следования информационных сигналов Тп. Уровень сигнала может изменять свою величину только в начале периода следования информационных сигналов.

До начала подачи цифровой информации в линию связи постоянно поступает сигнал “1” уровня. Если необходимо начать передачу данных, то им всегда предшествует так называемый стартовый бит “0”. Затем следует посылка битов слова данных, например 7-разрядного.


Рис.6 Формат сигналов последовательных данных (А), последовательный байт данных с контролем по нечетности (Б)

Слово данных может сопровождаться контрольным битом, соответствующим четности/нечетности “1” в передаваемом коде. Завершается посылка двумя стоповыми битами, всегда имеющими значение “1”. Внутри слова данных младший значащий разряд передается первым, старший – последним. После выдачи сигналов СТОП передатчик может либо сразу же передавать следующее слово данных, либо сохраняет уровень “1”, соответствующий исправности линии связи и передатчика при отсутствии передаваемых данных. Приемник следит за уровнями сигнала в линии связи, фиксируя переход от “1” к “0” как начало передачи, воспринимает данные следующих семи или восьми интервалов, анализирует наличие СТОП-битов и принимает решение о прекращении или продолжении приема. Следовательно, введение СТАРТ и СТОП в кодовую посылку позволяет осуществить синхронизацию приемника и передатчика и правильно интерпретировать сигналы данных.

На рис.6,А приведен формат последовательных данных, а на рис.6,Б – пример последовательной передачи двух слов данных с контролем на нечетность передаваемых “1” данных.

Схемы и принцип работы контроллера последовательно-параллельного интерфейса

Чтобы облегчить построение схем сопряжения внешних устройств с последовательным форматом выходных сигналов при создании микропроцессорных систем, в состав комплектов микропроцессорных БИС включается БИС контроллера последовательно-параллельного интерфейса. Такие контроллеры интерфейса имеют различную сложность, свои специфические особенности, но функции, выполняемые ими, практически одинаковы и соответствуют смысловому названию БИС универсальных асинхронных приемников-передатчиков (УАПП) или асинхронных интерфейсных адаптеров связи (АСИА).