Смекни!
smekni.com

Трёхмерная компьютерная графика (стр. 7 из 12)

Draw (Xпред, Yпред, Xi, Yi)

callГоризонт (Xпред, Yпред, Xi, Yi; Верх, Низ)

callПересечение (Xпред, Yпред, x, y, Низ; Xi, Yi)

Draw (Xi, Yi, x, y)

callГоризонт (Xi, Yi, x, y; Верх, Низ)

end if

end if

end if

end if

вновь инициализировать Пфлаг, Xпред, Yпред

Пфлаг = Тфлаг

Xпред = x

Yпред = y

next x

обработка правого концевого ребра

callОбрребра (x, y, Xправ, Yправ; Верх, Низ)

next z

finish

подпрограмма обработки бокового ребра

SubroutineОбрребра (x, y, Xребра, Yребра; Верх, Низ)

если Xребра = -1, то встречена первая кривая и ребро не создаётся

if Xребра = -1 then 1

callГоризонт (Xребра, Yребра, x, y; Верх, Низ)

1 Xребра = x

Yребра = y

return

подпрограмма определения видимости точки

SubroutineВидимость (x, y, Верх, Низ; Тфлаг)

видимость точки определяется по отношению к верхнему и нижнему плавающим горизонтам. Если точка лежит на самом горизонте, то она считается видимой.

Тфлаг = 0, если точка невидима

= 1, если она видима и выше верхнего горизонта

= -1, если она видима и ниже нижнего горизонта

x считается целой

if (y < Верх (x)) and (y > Низ (x)) thenТфлаг = 0

if y ³Верх (x) thenТфлаг = 1

if y £Низ (x) thenТфлаг = -1

return

подпрограмма заполнения массивов плавающих горизонтов

SubroutineГоризонт (X1, Y1, X2, Y2; Верх, Низ)

Эта программа использует линейную интерполяцию для заполнения массивов горизонтов между X1 и X2

Max (a, b) – определяет большее из a и b

Min (a, b) – определяет меньшее из a и b

проверка вертикальности наклона

if (X2 - X1) = 0 then

Верх (X2)=Max (Верх (X2), Y2)

Низ (X2)=Min (Низ (X2), Y2)

else

Наклон = (Y2 - Y1)/(X2 - X1)

for x = X1 to X2 step 1

y = Наклон * (x - X1) + Y1

Верх (x)=Max (Верх (x), y)

Низ (x)=Min (Низ (x), y)

next x

endif

return

подпрограмма вычисления пересечения текущей кривой с горизонтом

SubroutineПересечение (X1, Y1, X2, Y2, Массив; Xi, Yi)

Эта процедура вычисляет пересечение двух отрезков прямых

Массив содержит информацию о соответствующем горизонте

Signфункция принимающая значения-1, 0, 1, если знак её аргумента<0, =0, >0 соответственно

проверка бесконечности наклона

if (X2 – X1) = 0 then

Xi = X2

Yi = Массив (X2)

else

вычисление пересечения

обход начинается с самой левой используемой точки

пересечение считается обнаруженным, когда изменяется знак разности значений y

Наклон = (Y2 – Y1)/(X2 – X1)

Ysign = Sign (Y1 + Наклон - Массив (X1 + 1))

Csign = Ysign

Yi = Y1 + Наклон

Xi = X1 + 1

while Csign = Ysign

Yi = Y1 + Наклон

Xi = X1 + 1

Csign = Sign (Yi - Массив (Xi))

end while

выбирается ближайшее целое число

if |Yi -Наклон - Массив (X1 – 1)| £ |Yi -Наклон - Массив (X1)| then

Yi = Y1 – Наклон

Xi = X1 – 1

end if

end if

return

В приведенных выше алгоритме и примере функция у = f (x, z) рассматривалась только при z = const. Часто бывает удобно вычерчивать кривые, полагая постоянными как z, так и x. При этомвозникает эффект перекрестной штриховки. На первый взгляд может показаться, что перекрестную штриховку можно получить путем наложения двух результатов, образованных плоскостями z = const и x = const.Однако это не так. Верный результат получается при обработке тех кривых из числа лежащих в плоскостях z = const и x = const, которые ближе всего к горизонтальным при обычном порядке их следования. Однако после обработки каждой кривой, самой близкой к горизонтальной, необходимо обрабатывать участки кривых, лежащих в ортогональных ей плоскостях, которые находятся между указанной кривой и кривой, следующей за ней. Разумеется, при обработке обеих последовательностей кривых нужно использовать одни и те же массивы верхнего и нижнего плавающих горизонтов.Если используется перекрестная штриховка, то не надо формировать левое и правое боковые ребра.

Алгоритм Робертса

Алгоритм Робертсапредставляет собой первое известное решение задачи об удалении невидимых линий . Это математически элегантный метод, работающий в объектном пространстве. Алгоритм, прежде всего, удаляет из каждого тела те ребра или грани, которые экранируются самим телом. Затем каждое из видимых ребер каждого тела сравнивается с каждым из оставшихся тел для определения того, какая его часть или части, если таковые есть, экранируются этими телами. Поэтому вычислительная трудоемкость алгоритма Робертса растет теоретически как квадрат числа объектов. Именно этот факт привёл к снижению интереса к алгоритму Робертса. Однако математические методы, используемые в этом алгоритме, просты, мощны и точны. Кроме того, этот алгоритм можно использовать для иллюстрации некоторых важных концепций. Наконец, более поздние реализации алгоритма, использующие предварительную приоритетную сортировку вдоль оси z и простые габаритные или минимаксные тесты, демонстрируют почти линейную зависимость от числа объектов.

В алгоритме Робертса требуется, чтобы все изображаемые тела или объекты были выпуклыми. Невыпуклые тела должны быть разбиты на выпуклые части. В этом алгоритме выпуклое многогранное тело с плоскими гранями должно представляться набором пересекающихся плоскостей. Уравнение произвольной плоскости в трехмерном пространстве имеет вид

ах + by +cz+ d = 0 (3.1)

В матричной форме это выглядит так:

или

где

представляет собой плоскость. Поэтому любоевыпуклое твердое тело можно выразить матрицей тела, состоящейиз коэффициентов уравнений плоскостей, т. е.

где каждый столбец содержит коэффициенты одной плоскости.

Напомним, что любая точка пространства представима в однородных координатах вектором

Более того, если точка [S] лежит на плоскости,то [S]*[P]T = 0. Если же[S] не лежит на плоскости, тознак этого скалярного произведения показывает, по какую сторонуот плоскости расположена точка. В алгоритме Робертса предполагается, что точки, лежащие внутри тела, дают положительное скалярное произведение.

Хотя уравнение плоскости (3.1) содержит четыре неизвестных коэффициента, его можно нормировать так, чтобы d = 1 следовательно, трех неколлинеарных точек достаточно для определения этих коэффициентов. Подстановка координат трех неколлинеарных точек (x1, y1, z1), (x2, y2, z2), (x2, y2, z2)в нормированное уравнение (3.1) дает:

ax1+ by1 + cz1 = -1

ax2+ by2 + cz2 = -1

ax3+ by3 + cz3 = -1

В матричной форме это выглядит так:

или

(3.2)

Решение этого уравнения дает значения коэффициентов уравнения плоскости:

Другой способ используется, если известен вектор нормали к плоскости, т. е.

n = ai + bj + ck

где i, j, k - единичные векторы осей x, y, z соответственно. Тогда уравнение плоскости примет вид

ax + by + cz + d = 0(3.3)

Величина d вычисляется с помощью произвольной точки на плоскости. В частности, если компоненты этой точки на плоскости (х1, y1, z1)то:

d = - (aх1+by1 +cz1) (3.4)

Поскольку объем вычислений в алгоритмах удаления невидимыхлиний или поверхностей растет с увеличением числа многоугольников, для описания поверхностей выгодно использовать многоугольники с более чем тремя сторонами. Эти многоугольники могут быть как невыпуклыми, так и неплоскими. Метод, предложенный Мартином Ньюэлом, позволяет найти как точное решение для уравнений плоскостей, содержащих плоские многоугольники, так и “наилучшее” приближение для неплоских многоугольников. Этот метод эквивалентен определению нормали в каждой вершине многоугольника посредством векторного произведения прилежащих ребер и усреднения результатов. Если a, b, c, d – коэффициентыуравнения плоскости, то

(3.5)

где

if i =n then j = 1 else j = i + 1

а d вычисляется с помощью любой точки на плоскости.

Перед началом работы алгоритма удаления невидимых линий илиповерхностей для получения желаемого вида сцены часто применяется трехмерное видовое преобразование. Матрицы тел для объектов преобразованной сцены можно получить или преобразованием исходных матриц тел или вычислением новых матриц тел, используя преобразованные вершины или точки.

Если [В] - матрица однородных координат, представляющая исходные вершины тела, а [Т] - матрица размером 4х4 видового преобразования, то преобразованные вершины таковы:

[ВТ]= [В][T](3.6)

где [ВТ] - преобразованная матрица вершин. Использование уравнения (3.2) позволяет получить уравнения исходных плоскостей, ограничивающих тело:

[В][V]= [D] (3.7)

где [V] - матрица тела, а [D] в правой части - нулевая матрица. Аналогично уравнения преобразованных плоскостей задаются следующим образом:

[ВТ][VТ]= [D] (3.8)

где [VТ] - преобразованная матрица тела. Приравнивая левые части уравнения (3.7) и (3.8), получаем

[ВТ][VT] = [В][V]

Подставляя уравнение (3.6), сокращая на [В] и умножая слева на

[T]-1имеем

[VT] = [T]-1[V]

Итак, преобразованная матрица тела получается умножением исходной матрицы тела слева на обратную матрицу видового преобразования.