Смекни!
smekni.com

Концентраторы (стр. 2 из 3)

Защита от несанкционированного доступа

Разделяемая среда предоставляет очень удобную возможность для несанкциони­рованного прослушивания сети и получения доступа к передаваемым данным. Для этого достаточно подключить компьютер с программным анализатором протоко­лов к свободному разъему концентратора, записать на диск весь проходящий по сети трафик, а затем выделить из него нужную информацию.

Разработчики концентраторов предоставляют некоторый способ защиты дан­ных в разделяемых средах.

Наиболее простой способ — назначение разрешенных МАС-адресов портам кон­центратора. В стандартном концентраторе Ethernet порты МАС-адресов не имеют. Защита заключается в том, что администратор вручную связывает с каждым пор­том концентратора некоторый МАС-адрес. Этот МАС-адрес является адресом стан­ции, которой разрешается подключаться к данному порту. Например, на рис. 4.8 первому порту концентратора назначен МАС-адрес 123 (условная запись). Компью­тер с МАС-адресом 123 нормально работает с сетью через данный порт. Если зло­умышленник отсоединяет этот компьютер и присоединяет вместо него свой, концентратор заметит, что при старте нового компьютера в сеть начали поступать кадры с адресом источника 789. Так как этот адрес является недопустимым для первого порта, то эти кадры фильтруются, порт отключается, а факт нарушения прав доступа может быть зафиксирован.

Заметим, что для реализации описанного метода защиты данных концентратор нужно предварительно сконфигурировать. Для этого концентратор должен иметь блок управления. Такие концентраторы обычно называют интеллектуальными. Блок управления представляет собой компактный вычислительный блок со встроенным программным обеспечением. Для взаимодействия администратора с блоком управ­ления концентратор имеет консольный порт (чаще всего К.5-232), к которому под­ключается терминал или персональный компьютер с программой эмуляции терминала. При присоединении терминала блок управления организует на его эк­ране диалог, с помощью которого администратор вводит значения МАС-адресов. Блок управления может поддерживать и другие операции конфигурирования, на­пример ручное отключение или включение портов и т. д. Для этого при подключе­нии терминала блок управления выдает на экран некоторое меню, с помощью которого администратор выбирает нужное действие.


Рис. 4.8. Изоляция портов: передача кадров только от станций с


Другим способом защиты данных от несанкционированного доступа является их шифрация. Однако процесс истинной шифрации требует большой вычислительной мощности, и для повторителя, не буферизующего кадр, выполнить шифрацию «на лету» весьма сложно. Вместо этого в концентраторах применяется метод случайного искажения поля данных в пакетах, передаваемых портам с адресом, отличным от адреса назначения пакета. Этот метод сохраняет логику случайного доступа к среде, так как все станции видят занятость среды кадром информации, но только станция, которой послан этот кадр, может понять содержание поля данных кадра (рис. 4.9). Для реализации этого метода концентратор также нужно снабдить информацией о том, какие МАС-адреса имеют станции, подключенные к его портам. Обычно поле данных в кадрах, направляемых станциям, отличным от адресата, заполняется нулями.





Рис. 4.9. Искажение поля данных в кадрах, не предназначенных для приема станциями

Многосегментные концентраторы

При рассмотрении некоторых моделей концентраторов возникает вопрос — зачем в этой модели имеется такое большое количество портов, например 192 или 240? Имеет ли смысл разделять среду в 10 или 16 Мбит/с между таким большим количеством станций? Возможно, десять — пятнадцать лет назад ответ в некоторых случаях мог бы быть и положительным, например, для тех сетей, в которых компьютеры пользо­вались сетью только для отправки небольших почтовых сообщений или для перепи­сывания небольшого текстового файла. Сегодня таких сетей осталось крайне мало, и даже 5 компьютеров могут полностью загрузить сегмент Ethernet или Token Ring, а в некоторых случаях — и сегмент Fast Ethernet. Для чего же тогда нужен концентра­тор с большим количеством портов, если ими практически нельзя воспользоваться из-за ограничений по пропускной способности, приходящейся на одну станцию? Ответ состоит в том, что в таких концентраторах имеется несколько несвязанных внутренних шин, которые предназначены для создания нескольких разделяемых сред. Например, концентратор, изображенный на рис. 4.10, имеет три внутренние шины Ethernet. Если, например, в таком концентраторе 72 порта, то каждый из этих пор­тов может быть связан с любой из трех внутренних шин. На рисунке первые два компьютера связаны с шиной Ethernet 3, а третий и четвертый компьютеры — с шиной Ethernet 1. Первые два компьютера образуют один разделяемый сегмент, а третий и четвертый — другой разделяемый сегмент.

Рис. 4.10. Многосегментный концентратор


Между собой компьютеры, подключенные к разным сегментам, общаться через концентратор не могут, так как шины внутри концентратора никак не связаны.

Многосегментные концентраторы нужны для создания разделяемых сегментов, состав которых может легко изменяться. Большинство многосегментных концент­раторов, например System 5000 компании Nortel Networks или PortSwitch Hub компании 3Com, позволяют выполнять операцию соединения порта с одной из внутренних шин чисто программным способом, например с помощью локального конфигурирования через консольный порт. В результате администратор сети мо­жет присоединять компьютеры пользователей к любым портам концентратора, а затем с помощью программы конфигурирования концентратора управлять соста­вом каждого сегмента. Если завтра сегмент 1 станет перегруженным, то его ком­пьютеры можно распределить между оставшимися сегментами концентратора.

Возможность многосегментного концентратора программно изменять связи пор­тов с внутренними шинами называется конфигурационной коммутацией (configuration switching)

ВНИМАНИЕ Конфигурационная коммутация не имеет ничего общего с коммутацией кадров, которую выполняют мосты и коммутаторы.

Многосегментные концентраторы — это программируемая основа больших се­тей. Для соединения сегментов между собой нужны устройства другого типа — мосты/коммутаторы или маршрутизаторы. Такое межсетевое устройство должно подключаться к нескольким портам многосегментного концентратора, подсоеди­ненным к разным внутренним шинам, и выполнять передачу кадров или пакетов между сегментами точно так же, как если бы они были образованы отдельными устройствами -концентраторами.

Для крупных сетей многосегментный концентратор играет роль интеллекту­ального кроссового шкафа, который выполняет новое соединение не за счет меха­нического перемещения вилки кабеля в новый порт, а за счет программного изменения внутренней конфигурации устройства.

Управление концентратором по протоколу SNMP

Как видно из описания дополнительных функций, многие из них требуют конфи­гурирования концентратора. Это конфигурирование может производиться локально, через интерфейс RS-232C, который имеется у любого концентратора, имеющего блок управления.. Кроме конфигурирования в большой сети очень полезна функция наблюдения за состоянием концентратора: работоспособен ли он, в каком со­стоянии находятся его порты.

При большом количестве концентраторов и других коммуникационных устройств в сети постоянное наблюдение за состоянием многочисленных портов и изменением их параметров становится очень обременительным занятием, если оно должно вы­полняться с помощью локального подключения терминала. Поэтому большинство концентраторов, поддерживающих интеллектуальные дополнительные функции, могут управляться централизованно по сети с помощью популярного протокола управления SNMP (Simple Network Management Protocol) из стека TCP/IP.

Рис. 4.11. Структура системы управления на основе протокола SNMP


В блок управления концентратором встраивается так называемый ЗКМР-агент. Этот агент собирает информацию о состоянии контролируемого устройства и хранит ее в так называемой базе данных управляющей информации — Management Information Base, MIB. Эта база данных имеет стандартную структуру, что позволяет одному из компьютеров сети, выполняющему роль центральной станции управления, запра­шивать у агента значения стандартных переменных базы MIB. В базе MIB хранятся не только данные о состоянии устройства, но и управляющая информация, воздей­ствующая на это устройство. Например, в MIB есть переменная, управляющая со­стоянием порта, имеющая значения «включить» и «выключить». Если станция управления меняет значение управляющей переменной, то агент должен выполнить это указание и воздействовать на устройство соответствующим образом, например выключить порт или изменить связь порта с внутренними шинами концентратора.

Взаимодействие между станцией управления (по-другому — менеджером системы управления) и встроенными в коммуникационные устройства агентами происходит по протоколу SNMP. Концентратор, который управляется по протоколу SNMP, должен поддерживать основные протоколы стека TCP/IP и иметь IP- и МАС-адреса. Точнее, эти адреса относятся к агенту концентратора. Поэтому администратор, который хочет воспользоваться преимуществами централизованного управления концентраторами по сети, должен знать стек протоколов ТСР/IР и сконфигурировать IР-адреса их агентов.

Конструктивное исполнение концентраторов

На конструктивное устройство концентраторов большое влияние оказывает их область применения. Концентраторы рабочих групп чаще всего выпускаются как устройства с фиксированным количеством портов, корпоративные концентраторы — как модульные устройства на основе шасси, а концентраторы отделов могут иметь стековую конструкцию. Такое деление не является жестким, и в качестве корпоративного концентратора может использоваться, например, модульный кон­центратор.