Смекни!
smekni.com

Маршрутизаторы Cisco в сетях Frame Relay (стр. 4 из 5)

Во-первых, надо включить режим коммутации FR-кадров:

router(config)#frame-relay switching

Во-вторых, необходимо установить протокол Frame Relay на последовательных интерфейсах, к которым будут подключаться устройства FR DTE, и указать, что эти интерфейсы принадлежат устройству FR DCE, то есть - коммутатору:

router(config-if)#encapsulation frame-relayrouter(config-if)#frame-relay intf-type dce

Если интерфейс является устройством DCE также и на физическом уровне, необходимо установить тактовую частоту в линии командой clock rate.

В третьих, необходимо построить таблицу коммутации виртуальных каналов между интерфейсами. Это делается путем подачи необходимого числа команд connect. Каждая команда устанавливает двунаправленное соединение между двумя DLCI - то есть, образует транзитный PVC.

router(config)#connect имя интерфейс(1) DLCI(1) интерфейс(2) DLCI(2) router(config-fr-switching)#exitrouter(config)#

где имя - произвольный текстовый идентификатор соединения.

4.2 Конфигурация оконечного маршрутизатора (FR DTE)

Наиболее простой способ организации IP на интерфейсе FR изображен на рисунке 1, слева.


Рис. 4.2.1. Протокол IP на основном FR-интерфейсе

В этом случае все PVC терминируются на одном IP-интерфейсе, который совпадает с интерфейсом FR. В этом случае говорят, что протокол IP используется на "основном интерфейсе" (major interface).

Граф сети с точки зрения протокола IP показан на рис. 4.2.1, справа: все узлы подключены к общей IP-сети. Для этой сети, как и для любой другой IP-сети, выделяется диапазон адресов и каждому основному интерфейсу назначается IP-адрес из этого диапазона.

Примечание - По определению IP-сети, каждый узел в ней может связаться с каждым без помощи промежуточного маршрутизатора. Фактически, полную связность можно реализовать только при полносвязной структуре PVC, где каждый маршрутизатор соединен с каждым. В данном примере маршрутизаторы B,C,D не смогут связаться друг с другом непосредственно.

Минимальная конфигурация интерфейса маршрутизатора выглядит следующим образом:

router(config-if)#encapsulation frame-relay [ietf]router(config-if)#ip address адрес маска

По умолчанию используется инкапсуляция данных в кадрах FR по стандарту Cisco, альтернативный вариант - инкапсуляция согласно RFC 2427 (ему соответствует параметр ietf).

Тип LMI маршрутизатор определяет автоматически, анализируя сообщения, поступающие от утройства DCE (FR-коммутатора). При необходимости жестко задать тип LMI используется команда

router(config-if)#frame-relay lmi-type {cisco | ansi | q933a }

Поскольку в рассматриваемой конфигурации интрефейса не указаны DLCI и соответствующие им IP-адреса, то маршрутизатор автоматически

a) получает номера DLCI от утройства DCE по протоколу LMI и таким образом определяет подключенные к интерфейсу PVC;
б) использует протокол InARP для опроса удаленных концов подключенных PVC на предмет их IP-адресов.

Поскольку InARP определяет IP-адреса на дальних концах только тех PVC, которые непосредственно подключены к маршрутизатору, то маршрутизаторы, например, В и С не смогут связаться друг с другом, поскольку между ними нет PVC.

Другой способ указания номеров DLCI и IP-адресов, доступных через указанные DLCI, состоит в ручном конфигурировании этих параметров:

router(config-if)#frame-relay map ip IP-адрес DLCI

При ручном указании frame-relay map, протокол InARP на соответствующем PVC автоматически отключается. Таким образом, либо используется InARP, либо вручную указываются все IP-адреса, доступные через данный DLCI. На PVC, чей DLCI не упомянут в командах frame-relay map, InARP продолжает работу.

Необходимо понимать, что под "всеми IP-адресами" понимаются адреса IP-сети, состоящей из PVC, подключенных к данному интерфейсу. Достижимость других IP-адресов определяется по таблице маршрутов.

Рассмотрим пример. Пусть адрес сети FR на рисунке 1 - 1.0.0.0/24. Интерфейсы маршрутизаторов А и В имеют адреса 1.0.0.1 и 1.0.0.2. Маршрутизатор В получает дейтаграмму, адресованную в 2.2.2.2. По своей таблице маршрутов он определяет, что подобные дейтаграммы следует отправлять через узел 1.0.0.1. Далее маршрутизатор В замечает, что он имеет IP-интерфейс (предположим, serial0), подключенный в ту же IP-сеть, что и узел 1.0.0.1, следовательно, поиск по таблице маршрутов закончен и следующий маршрутизатор найден.

На втором этапе процесса обслуживания дейтаграммы маршрутизатор В должен определить, по какому из нескольких подключенных к интерфейсу serial0 виртуальных каналов PVC эта дейтаграмма должна быть отправлена. Если бы на месте FR был Ethernet, то маршрутизатор обратился бы к ARP-таблице и нашел бы MAC-адрес узла 1.0.0.1. В случае FR аналогичную роль играет карта (map), которая ставит в соответствие IP-адреса сети 1.0.0.0/24 и PVC (DLCI), подключенные к интерфейсу serial0. Карта заполняется протоколом InARP и/или вручную командами frame-relay map.

Продолжим пример. Маршрутизатор С в сети FR имеет адрес 1.0.0.3. Маршрутизатор В получает дейтаграмму, адресованную в 3.3.3.3. По своей таблице маршрутов он определяет, что подобные дейтаграммы следует отправлять через узел 1.0.0.3. Маршрутизатор В замечает, что он имеет IP-интерфейс serial0, подключенный в ту же IP-сеть, что и узел 1.0.0.3, следовательно, поиск по таблице маршрутов закончен и следующий маршрутизатор найден.

Далее маршрутизатор В обращается к карте FR для определения PVC, через который он должен отправить дейтаграмму. Если карта строится протоколом InARP, то, поскольку между В и С нет PVC, карта не содержит информации об IP-адресе 1.0.0.3 и дейтаграмма уничтожается. Для того, чтобы сделать возможной доставку дейтаграммы, нужно реализовать один из следующих вариантов:

· (решение на уровне 3) в таблице маршрутов В направить маршрут к 3.3.3.3 через 1.0.0.1, а в таблице маршрутов А направить маршрут к 3.3.3.3 через 1.0.0.3;

· (решение на уровне 2) указать в карте маршрутизатора В, что адрес 1.0.0.3 доступен через PVC A-B (после этого протокол InARP на этом PVC отключится, следовательно, необходимо также указать, что через тот же PVC доступен и адрес 1.0.0.1).

IP-интерфейсы, подключенные к сетям FR, делятся на 2 типа: точка-точка (point-to-point) и точка-много точек (point-to-multipoint). Интерфейс point-to-point позволяет обмениваться пакетами только с одним узлом, а point-to-multipoint - с несколькими. Очевидно, что основной интерфейс (на примере маршрутизатора А) имеет тип point-to-multipoint.

На рисунке 4.2.2, слева, изображена организация сетевого уровня на FR-интерфейсе с использованием подынтерфейсов типа point-to-point.


Рисунок 4.2.2 - Протокол IP на подынтерфейсах "точка-точка"

В этом случае каждый PVC терминируется на собственном IP-интерфейсе. Эти логические IP-интерфейсы называются подынтерфейсами основного интерфейса. На подынтерфейсах типа point-to-point может терминироваться, очевидно, только один PVC. Такой подынтерфейс с точки зрения протокола IP ничем не отличается от обычного последовательного интерфейса; каждому из подынтерфейсов присваивается собственный IP-адрес. Поэтому (рис. 4.2.2, справа) граф IP-сетей представлен тремя разными IP-сетями.

В данном случае нет смысла задействовать InARP или вручную создавать карту, поскольку все IP-адреса, достижимые через данный IP-интерфейс, должны находиться на другом конце единственного PVC, подключенного к подынтерфейсу. Но так как к основному интерфейсу могут быть подключены несколько PVC, то в конфигурации каждого подынтерфейса типа "точка-точка" необходимо указать, какой именно PVC подключен к данному подынтерфейсу (путем спецификации номера DLCI).

Следующая последовательность команд решает задачи конфигурации, показанной на рис. 4.2.2.

router(config)#interface serial0router(config-if)#encapsulation frame-relay [ietf]router(config-if)#no ip address router(config-if)#interface serial0.1 point-to-pointrouter(config-subif)#frame-relay interface-dlci DLCIrouter(config-fr-dlci)#exitrouter(config-subif)#ip address адрес маска router(config-subif)#interface serial0.2 point-to-pointrouter(config-subif)#frame-relay interface-dlci DLCIrouter(config-fr-dlci)#exitrouter(config-subif)#ip address адрес маска ... и так далее для всех подынтерфейсов

В данном примере в качестве основного интерфейса использовался serial0. Подынтерфейс идентифицируется числом, добавляемым к номеру основного интерфейса через точку (например, serial0.1); числа могут быть произвольными и не обязаны следовать по порядку.

На рисунке 3 изображен смешанный дизайн сети, где два PVC терминируются в одном IP-интерфейсе, а третий PVC терминируется в своем собственном IP-интерфейсе. Соответствующий граф IP-сетей показан на том же рисунке справа.


Рис. 4.2.3 Смешанный дизайн

В этом случае для синей IP-сети создается подынтерфейс типа point-to-point, а для коричневой - подынтерфейс point-to-multipoint.

Подынтерфейс point-to-multipoint ведет себя также, как основной интерфейс, в плане использования протокола InARP или заполнения карты. Однако, если на основном интерфейсе мы могли не перечилять PVC, подключенные к интерфейсу, так как этот список сообщал нам коммутатор, то в случае с подынтерфейсом point-to-multipoint мы должны указать подключенные к подынтерфейсу DLCI, иначе маршрутизатор не сможет определить, какие именно из PVC, подключенных к основному интерфейсу, необходимо сгруппировать в подынтерфейс.

Конфигурация подынтерфейса point-to-multipoint:

router(config)#interface serial0.1 multipoint router(config-subif)#frame-relay interface-dlci DLCIrouter(config-fr-dlci)#exit... повторить для всех DLCI, подключенных к подынтерфейсу router(config-subif)#ip address адрес маска ... при необходимости составить frame-relay map вручную

В заключение необходимо подчеркнуть, что все рассмотренные выше способы организации работы протокола IP на каналах Frame Relay имеют значение только для абонентов сети (устройств DTE). Более того, все эти способы применялись физически к одной и той же FR-сети. Для оператора связи (DCE) вся эта деятельность не имеет никакого значения: оператор работает только на уровне коммутации кадров на основании номеров DLCI и все три рассмотренных дизайна с его точки зрения совершенно идентичны, равно как и переход от одного дизайна к другому для оператора связи невидим и не имеет значения.