Смекни!
smekni.com

Микроорганизмы (стр. 4 из 5)

в) Болезни растений.

Почти все растения подвержены бактериальному заражению. Большинство патогенов растений относятся к бациллам (палочковидным формам), многие из них паразитируют в растении – хозяине. Симптомы заболеваний, вызваны патогенными бактериям, разнообразны, большинство случаев – это пятна на стеблях, листьях, цветках и плодах. Многие наносящие экономический ущерб заболеваний растений, такие как ожог, яблонь и груши приводит к гибели молодых деревьев в течение одного сезона. Бактериальная мягкая гниль поражает мясистые запасающие части овощей, такие как клубни (картофель), луковицы, а также сочные плоды – томаты, баклажаны и мн. др. Бактериальные вилы проводящих тканей поражают только травянистые растения. Галл побегов, Галл сахарного тростника, волосяной или косматый корень, кольцевая гниль картофеля, пятнистость плодов, рак цитрусовых, ожог орехов, парша картофеля. Все эти заболевания растений вызваны микроорганизмами.

Микроорганизмы – это живые существа, имеющие своё строение и функции. Это существа, обитающие не в определённой точке Земного шара, а по всей планете. Их можно отнести: некоторых к полезным, а некоторых к вредителям, которые приводят к массовой гибели человека, животных и растений.

С древних времён человек использовал микроорганизмы для заготовки в прок фруктов и овощей, получение кисломолочных продуктов, в хлебопечении, виноделии, пивоварении. Сейчас область значения применения микроорганизмов в научной промышленности, в такой как селекция. Как правило, природные штампы микроорганизмов обладают незначительной «дозой» полезного для человека признака, поэтому после выделения микроорганизмов с нужным свойством, возникает задача усилить это свойство. В настоящее время такие задачи можно решить с помощью традиционных методов селекции или новых методов генетической и клеточной инженерии.

Генетическая инженерия – конструирование функционально активных химических структур (рекомбинантных ДНК), с последующим введением их в клетку прокариотного или эукариотного организма.

Клеточная инженерия - конструирование клеток с основным геном, путём искусственного объединения целых клеток. Селекция микроорганизмов и работа с их генетическим материалом значительно облегчает благодаря целому ряду свойств этих организмов. Они быстро растут и размножаются. Известно несколько этапов селекции.

1этап – выделение или выбор микроорганизма, способного производить необходимый продукт. Выбор одного из многих разных организмов, способных производить один и тот же продукт, определяется многими факторами, например: продуктивностью, технологичностью организма, его изученностью и др.

2 этап – усиление способности отобранного организма к синтезу необходимого продукта.

Наиболее эффективный способ получения высокопродуктивных штампов – мутагенез.С некоторой долей условности можно считать, что бактериальная хромосома состоит из структурных и регулярных генов. В синтезе любого, даже самого простого вещества задействовано множество генов и ферментов. Для синтеза необходимо, чтобы в клетку поступил исходный материал – субстракт. Поступивший в клетку субстракт должен подвергнутся превращениям в процессе происхождения по метаболистическим путям, в результате чего образуется предшественник соответствующего продукта. В этом процессе также задействовано множество структурных и регулярных генов и ферментов. Таким образом, мутация, произошедшая в том или другом гене, может отразиться на образовании нужного продукта. В месте с тем, не всякая мутация может привести к сверхсинтезу интересующего селекционера вещества. Мутантные организмы могут быть получены и без какого-либо внешнего воздействия, в результате спонтанных мутаций. Однако вероятность их возникновения невелико. Для увеличения количества мутантных организмов используют индуцированный мутагенез. Клетки обрабатывают различными мутагенами: ионизирующим излучением или, чаще, УФ- светом; химическими мутагенами в виде растворов алкилирующих агентов или в виде газов. После определённого времени контакта мутагена с организмом, мутаген удаляют, а клетки высевают на соответствующею среду. В селекционной работе обычно используют такие дозы мутагенов, после воздействия которых выживает от 0, 1 до 50-80% клеток. Среди колоний образованных клетками, подвергшимися действию мутагенов, проводится отбор мутантов с желательными свойствами. Известны два основных пути отбора мутантных штампов. Первый – это проверка результатов «случайных» мутаций с количественной оценкой искомого признака, например, синтеза аминокислоты, витамина и др. Этот приём используется в том случае, если селекционер не имеет сведений, его регуляции и т.д. При этом из выросших колоний отбирается подряд необходимое их количество и все они тотально проверяются на способность к синтезу искомого вещества.

Наиболее активные из отобранных продуцентов снова проводят мутагенному воздействию. Второй – это отбор мутантов, устойчивых к структурным аналогам метаболитов - аминокислот, пуринов, пиримидинов. Согласно этому методу, клетки, отобранные мутагеном, просевают в чашки Петри на минимальную среду, содержащий структурный аналог метаболита, например, аминокислоты. Этот аналог поступает в клетку и имитирует (для регуляторных систем клетки) избыток этого метаболита в среде, вызывая тем самым подавление синтеза настоящей аминокислоты. Клетки при этом расти, не могут т.к. структурный аналог аминокислоты не встраивается в полипептидную цепь и синтез белков прекращается. Однако через некоторое время появляются мутанты, преодолевшие тем или иным путём действие аналога и способных к дальнейшему развитию. Если при этом в результате мутации нарушалась регуляция синтеза аминокислоты т.е. синтез не подавляется даже при наличии избытка её в среде, то такие мутанты становятся сверхпродуцентами этого вещества. В этом случае все способные к росту и развитию клетки могут оказаться сверхпродуцентами. Бывает, что в результате мутации нарушается не регуляция синтеза вещества, а транспорт его аналога из среды в клетку. В этом случае синтез аминокислоты не подавляется, клетка растёт нормально, но сверхпродуцентом она не является. На основе использования мутагенеза удалось, например, повысить продуктивность штампов, синтезирующей пиницилин в 300-35 раз, а продуктивность штампов, образующих аминокислоту лизин в 300-400 раз

Так же есть ещё один метод селекции микроорганизмов. Это один из методов клеточной инженерии – метод генетических рекомбинантов. Он основывается на слияние протопластов клеток.

После получения высокопродуктивного штампа какого-либо продукта встают проблемы хранения этого штампа и поддержания его высокой продуктивности. Существуют несколько методов длительного хранения культур продуцентов. Один из наиболее простых, но не самых эффектных методов является регулярный пересев штампа на свежую среду. При таком методе может происходить снижение продуктивности штампа из-за спонтанного метагенеза и постепенного отбора не самых высоко продуктивных клеток, а самых приспособленных к данным условиям культивирования.

В последние годы успешно применяется способ сохранения культур путём их глубокого и резкого замораживания, например, в жидком азоте, а в некоторых случаях и в сухом льде (в твёрдом состоянии).

Микроорганизмы и продукты их жизнедеятельность в настоящее время широко используется в промышленности, сельском хозяйстве, медицине.

Микробная биомасса используется как корм скоту. Микробная биомасса некоторых культур используется в виде разнообразных заквасок, которые применяются в пищевой промышленности. Так приготовлении хлеба, пива, вин, спирта, уксуса, кисломолочных продуктов сыров и многих продуктов. Другое важное направление-это использование продуктов жизнедеятельности микроорганизмов. Продукты жизнедеятельности по природе этих веществ и по значимости для продуцента можно разделить на три группы.

1.группа – это крупные молекулы с молекулярной массой. Сюда относятся разнообразные ферменты (липазы и т.д.) и полисахариды. Использование их чрезвычайно широка – от пищевой и текстильной промышленности до нефтедобывающей.

2.группа – это первичные метаноболиты, к которым относится вещества, необходимые для роста и развития самой клетки: аминокислоты, органические кислоты, витамины и другие.

3.группа – вторичные метаноболиты. К ним относится: антибиотики, токсины, алкалоиды, факторы роста и др. Важное направление биотехнологии – использовании микроорганизмов как биотехнических агентов для превращения или трансформации некоторых веществ, очистки вод, почв или воздуха от загрязнителей. Также в добыче нефти микроорганизмы играют важную роль. Традиционным способом из нефтяного пласта извлекается не более 50% нефти. Продукты жизнедеятельности бактерий, накапливая в пласте, способствуют вытеснения нефти и более полному выходу её на поверхность.

Огромная роль микроорганизмов в создании поддержании и сохранении почвенного плодородия. Они принимают в участии в образовании почвенного перегноя – гумуса. Применяются в повышении урожайности сельскохозяйственных культур.