Смекни!
smekni.com

Модемные протоколы (стр. 5 из 8)

Протоколы сжатия и коррекции ошибок
Название Чей протокол, год принятия Назначение
V.41 ITU, 1968, 1972 Коррекция ошибок
V.42 ITU, 1988 Коррекция ошибок
V.42bis ITU, 1990 Сжатие
V.43 ITU, 1998 Коррекция ошибок
V.44 ITU, 2000 Сжатие
BTLZ British Telecom Сжатие
ADC Hayes Сжатия
ACT Formula Сжатие
MNP1 Microcom Сжатие
MNP2 Microcom Коррекция ошибок
MNP3 Microcom Коррекция ошибок
MNP4 Microcom Коррекция ошибок
MNP5 Microcom Сжатие
MNP7 Microcom Сжатие
MNP9 Microcom Сжатие
MNP10 Microcom Коррекция ошибок
ETC AT&T, 1993 Коррекция ошибок
SDC Motorola Сжатие, коррекция ошибок

Сжатие информации

Теперь давайте обсудим еще одно важное понятие - сжатие информации. Конечно, вы знакомы с программами-архиваторами и понимаете, какую выгоду может дать сжатие информации при ее перекачке по каналу связи, за пользование которым приходится платить. Понимали это и разработчики протоколов связи, и поэтому самые совершенные из этих протоколов предусматривают сжатие информации перед самой отправкой. Как вы знаете, достаточно лишь пяти бит, чтобы передать любую из 32-х букв русского алфавита. Это иллюстрирует тот факт, что если в сообщении используются не все 256 символов ASCII, то при его передаче можно обойтись "урезанным байтом" - с меньшим количеством бит (конечно, передаваемые байты остаются восьмибитовыми, а группы из, скажем, 5 бит могут начинаться в одном байте и заканчиваться в следующем).

Разумеется, вряд ли в вашем сообщении будут задействованы все до одного символы таблицы ASCII. Поэтому за счет такого "укорачивания байта" можно заметно сократить объем файла, не потеряв ничего из его содержимого. Более того, длина таких укороченных байтов может быть даже переменной, причем более часто встречающиеся символы кодируются более короткими последовательностями битов. Ну и наконец, еще большей экономии можно достичь, сокращая повторяющиеся группы символов по принципу:

ААААА - 5A

Конечно, этим методы сжатия данных не исчерпываются, и, например, программы-архиваторы работают по гораздо более сложным алгоритмам. Но, к сожалению, при сжатии данных прямо во время передачи (как говорят, "на лету") алгоритм в каждый момент времени видит лишь небольшую часть всех данных - один блок (см. ниже). Поэтому большой эффективности достичь при этом не удается; скажем, если два подряд идущих блока совершенно одинаковы, посылающий модем не может просто сказать, что второй блок совпадает с первым, - ему все равно придется послать еще раз те же данные, так как сжимать информацию позволяется только в пределах одного блока.

Перечень протоколов MNP

MNP (Microcom Network Protocols) - серия наиболее распространенных аппаратных протоколов, впервые реализованная на модемах фирмы Microcom. Эти протоколы обеспечивают автоматическую коррекцию ошибок и компрессию передаваемых данных.

Сейчас следующие протоколы:

MNP1. Протокол коррекции ошибок, использующий асинхронный полудуплексный метод передачи данных. Это самый простой из протоколов MNP.

MNP2. Протокол коррекции ошибок, использующий асинхронный дуплексный метод передачи данных.

MNP3. Протокол коррекции ошибок, использующий синхронный дуплексный метод передачи данных между модемами (интерфейс модем - компьютер остается асинхронным). Так как при асинхронной передаче используется десять бит на байт - восемь бит данных, стартовый бит и стоповый бит, а при синхронной только восемь, то в этом кроется возможность ускорить обмен данными на 20%.

MNP4. Протокол, использующий синхронный метод передачи, обеспечивает оптимизацию фазы данных, которая несколько улучшает неэффективность протоколы MNP2 и MNP3. Кроме того, при изменении числа ошибок на линии соответственно меняется и размер блоков передаваемых данных. При увеличении числа ошибок размер блоков уменьшается, увеличивая вероятность успешного прохождения отдельных блоков. Эффективность этого метода составляет около 20% по сравнению с простой передачей данных.

MNP5. Дополнительно к методам MNP4, MNP5 часто использует простой метод сжатия передаваемой информации. Символы часто встречающиеся в передаваемом блоке кодируются цепочками битов меньшей длины, чем редко встречающиеся символы. Дополнительно кодируются длинные цепочки одинаковых символов. Обычно при этом текстовые файлы сжимаются до 35% своей исходной длины. Вместе с 20% MNP4 это дает повышение эффективности до 50%. Заметим, что если вы передаете уже сжатые файлы, а в большинстве это так и есть, дополнительного увеличения эффективности за счет сжатия данных модемом этого не происходит.

MNP6. Дополнительно к методам протокола MNP5 автоматически переключается между дуплексным и полудуплексным методами передачи в зависимости от типа информации. Протокол MNP6 также обеспечивает совместимость с протоколом V. 29.

MNP7. По сравнению с ранними протоколами использует более эффективный метод сжатия данных.

MNP9. Использует протокол V. 32 и соответствующий метод работы, обеспечивающий совместимость с низкоскоростными модемами.

MNP10. Предназначен для обеспечения связи на сильно зашумленных линиях, таких, как линии сотовой связи, междугородними линиями, сельские линии. Это достигается при помощи следующих методов:

- многократного повторения попытки установить связь

- изменения размера пакетов в соответствии с изменением уровня помех на линии

- динамического изменения скорости передачи в соответствии с уровнем помех линии

Все протоколы MNP совместимы между собой снизу вверх. При установлении связи происходит установка наивысшего возможного уровня MNP-протокола. Если же один из связывающихся модемов не поддерживает протокол MNP, то MNP-модем работает без MNP-протокола.

Сравнение V.42 с MNP2-4

Оснащение стандартных среднескоростных модемов аппаратно реализованными протоколами коррекции ошибок и сжатия данных стало в последнее время стандартом де-факто в модемостроении. Если для западного рынка, где качество телефонных каналов весьма высоко, наличие этих протоколов - небесполезная подробность в рекламе предлагаемого изделия, которая к тому же повышает цену товара не более, чем на 15-20%, то в условиях отечественного телекоммуникационного пространства реализация тем или иным способом коррекции ошибок становится по понятным причинам совершенно необходимой.

Сравнив MNP2-4 и V.42 ITU-T, становится понятно, какой же перспективнее, и разрешается это сравнение в пользу ITU-T. Попытаемся аргументировать справедливость этого вывода ниже.

Принципы коррекции ошибок

Не вдаваясь глубоко в теорию кодирования и помехозащищенности передачи информации, можно лишь констатировать, что бесплатных ужинов не бывает: избыточность - единственный реальный базис обнаружения и коррекции ошибок. Избыточность в широком смысле. Она может быть "последовательной", в случаях применения любого из методов кодирования, т.е. передача дополнительной по отношению к "полезной" информации. Либо "параллельной", в случаях как использования параллельных каналов связи (возможно, различной физической природы), так и применения информационной обратной связи, т.е. возврата, используя дуплексный канал, принятой информации для анализа передатчиком ее правильности. Применение кодирования с решающей обратной связью - это пример комбинированной, "последовательно-параллельной" избыточности. Степень избыточности определяет глубину и надежность обнаружения ошибок. Представляется очевидным, что чем больше дополнительной информации будет передано, тем большее количество ошибок и с большей достоверностью может быть обнаружено и даже, возможно, исправлено. Но, в то же время, тем меньше доля полезной информации в общем потоке данных и - тем меньше эффективная скорость приема/передачи и, в конечном счете, пропускная способность канала. Выбор процедуры коррекции ошибок, таким образом, можно рассматривать как оптимизационную задачу, критерием которой является минимизация накладных расходов при заданной надежности приема/передачи информации.

Физическая природа канала передачи информации - коммутируемая телефонная сеть - определяет те факторы, вес которых оказывается наиболее значим при решении поставленной оптимизационной задачи. Отсутствие дублирования канала (по крайней мере на абонентском участке линии) исключает из рассмотрения физическое параллельное дублирование. В то же время, применение обратной связи вполне допустимо вследствие того, что ка- нал дуплексный.

Фактор "стоимость трафика" заставляет с большой осторожностью относиться к таким методам коррекции ошибок, как многократное дублирование передаваемой информации с мажоритарным выбором или применение информационной обратной связи. Объем передаваемой информации в первом случае возрастает как минимум втрое, а то и более. Во втором случае, гонять одну и ту же информацию в полном объеме в обе стороны только для обнаружения факта наличия ошибки с последующим повтором представляется также излишне расточительным.

Разумным компромиссом было сочтено применение циклического помехозащищенного кодирования с решающей обратной связью. Суть этого метода состоит в следующем. Вся "полезная" информация разбивается на "порции" - кадры. Передача каждого кадра завершается передачей специальной контрольной последовательности кадра, подсчитанной по некоему, заранее определенному алгоритму. Этот рекуррентный алгоритм в процессе выдачи кадра модифицирует контрольную последовательность с помощью очередного выдаваемого байта. Удаленная сторона, принимая кадр, также подсчитывает контрольную последовательность по известному алгоритму. По окончании приема кадра производится сравнение подсчитанной контрольной последовательности с принятым в конце кадра ее значением. По результатам сравнения приемник решает вопрос: быть ли данному кадру, или его следует повторить. Результат решения этого вопроса приемник сообщает передатчику посредством некоей "квитанции". Отсюда другое название этого метода: метод автоматического повтора запроса (ARQ, Automatic Repeat reQuest).