Смекни!
smekni.com

Параллельный интерфейс: LPT-порт (стр. 3 из 6)

1. Хост сигнализирует о готовности приема данных установкой низкого уров­ня на линии HostBusy.

2. ПУ в ответ помещает байт данных на линии DATA[7:0].

3. ПУ сигнализирует о действительности байта установкой низкого уровня на линии PtrClk.

4. Хост устанавливает высокий уровень на линии HostBusy, указывая на заня­тость приемом и обработкой байта.

5. ПУ отвечает установкой высокого уровня на линии PtrClk.

6. Хост подтверждает прием байта импульсом HostClk.

7. Шаги 1-6 повторяются для каждого следующего байта.

Побайтный режим позволяет поднять скорость обратного канала до скорости прямого канала в стандартном режиме. Однако работать он может только на двунаправленных портах, которые применяются в основном лишь на малорас­пространенных машинах PS/2.

Режим ЕРР

Протокол ЕРР (Enhanced Parallel Port — улучшенный параллельный порт) предназначен для повышения производительности обмена по параллельному порту. ЕРР был реализован в чипсете Intel 386SL (микросхе­ма 82360) и используется как дополнительный протокол параллельного порта.

Протокол ЕРР обеспечивает четыре типа циклов обмена:

Цикл записи данных.

Цикл чтения данных.

Цикл записи адреса.

Цикл чтения адреса.

Адресные циклы могут быть использованы для передачи адресной, канальной и управля­ющей информации. Циклы обмена данными явно отличаются от адресных цик­лов применяемыми стробирующими сигналами. Назначение сигналов порта ЕРР и их связь с сигналами SPP приведены в табл. 6.

Таблица 6.

Сигналы LPT-порта в режиме ввода/вывода ЕРР

Контакт

Сигнал SPP

Имя в ЕРР

I/O

Описание

1

STROBE»

WRITE»

0

Низкий уровень — признак цикла записи, высокий — чтения

14

AUTOFEEDff

DATASTB#

0

Строб данных. Низкий уровень устанавливается в циклах передачи данных

17

SELECTING

ADDRSTB#

0

Строб адреса. Низкий уровень устанавливается в адресных циклах

16

INIT#

RESETS

0

Сброс ПУ (низким уровнем)

Контакт

Сигнал SPP

Имя в ЕРР

I/O

Описание

10

АСК#

INTR#

I

Прерывание от ПУ

11

BUSY

WAIT»

I

Сигнал квитирования. Низкий уровень разрешает начало цикла (установку строба в низкий уровень), переход в высокий — разрешает завершение цикла (снятие строба)

2-9

D[8:0]

AD[8:0]

I/O

Двунаправленная шина адреса/данных

12

РЕ

AckDataReq*

I

Используется по усмотрению разработчика перифе­рии

13

SELECT

Xflag*

I

Используется по усмотрению разработчика перифе­рии

15

ERROR

DataAvaiW*

I

Используется по усмотрению разработчика перифе­рии

ЕРР-порт имеет расширенный набор регистров (табл. 7), который занимает в пространстве ввода/вывода 5-8 смежных байт.

Таблица 7.

Регистры ЕРР-порта

Имя регистра Смещение Режим R/W Описание
SPP Data Port +0 SPP/EPP W Регистр данных стандартного порта
SPP Status Port +1 SPP/EPP R Регистр состояния стандартного порта
SPP Control Port +2 SPP/EPP W Регистр управления стандартного порта
EPP Address Port +3 EPP R/W Регистр адреса ЕРР. Чтение или запись в него гене­рирует связанный цикл чтения или записи адреса ЕРР
EPP Data Port +4 EPP R/W Регистр данных ЕРР. Чтение (запись) генерирует свя­занный цикл чтения (записи) данных ЕРР
Not Defined +5...+7 EPP N/A В некоторых контроллерах могут использоваться для 16-32-битных операций ввода/вывода

В отличие от программно-управляемых режимов, описанных выше, внешние сигналы ЕРР-порта (как информационные, так и сигналы квитирования) для каждого цикла обмена формируются аппаратно по одной операции записи или чтения в регистр порта.

Цикл записи данных состоит из следующих фаз:

1. Программа выполняет цикл записи (IOWR#) в порт 4 (ЕРР Data Port).

2. Адаптер устанавливает сигнал Writeff (низкий уровень), и данные помеща­ются на выходную шину LPT-порта.

3. При низком уровне WAIT# устанавливается строб данных.

4. Порт ждет подтверждения от ПУ (перевода WAIT# в высокий уровень).

5. Снимается строб данных — внешний ЕРР-цикл завершается.

6. Завершается процессорный цикл ввода/вывода.

7. ПУ устанавливает низкий уровень WAIT#, указывая на возможность начала следующего цикла.

Главной отличительной чертой ЕРР является выполнение внешней передачи во время одного процессорного цикла ввода/вывода. Это позволяет достигать высоких скоростей обмена (0,5-2 Мбайт/с). Периферийное устройство, под­ключенное к параллельному порту ЕРР, может работать на уровне произво­дительности устройства, подключаемого через слот ISA. Периферийное устройство может регулировать длительность всех фаз обмена с помощью всего лишь одного сигнала WAIT#. Протокол автоматически подстраивается и под длину кабеля — вносимые задержки только приведут к удлинению цикла.

«ЗАВИСАНИЕ» процессора на шинном цикле обмена препятствует механизм тайм-аутов PC, который принудительно завершает любой цикл обме­на, длящийся более 15 мкс.

С программной точки зрения контроллер ЕРР-порта выглядит достаточно про­сто (см. табл.7). К трем регистрам стандартного порта, имеющим смещение 0, 1 и 2 относительно базового адреса порта, добавлены два регистра (ЕРР Address Port и ЕРР Data Port), чтение и запись в которые вызывает генерацию связанных внешних циклов.

Назначение регистров стандартного порта сохранено, что обеспечивает сов­местимость ЕРР-порта с периферийными устройствами и программным обес­печением, рассчитанными на применение программно-управляемого обмена. Поскольку сигналы квитирования адаптером вырабатываются аппаратно, при записи в регистр управления CR биты 0, 1 и 3, соответствующие сигналам STROBES, AUTOFEEDS и SELECTING, должны иметь нулевые значения. В противном случае программное вмешательство может нарушить последовательность квитирова­ния. Некоторые адаптеры имеют специальные средства защиты (ЕРР Protect), при включении которых программная модификация этих бит блокируется.

Использование регистра данных ЕРР позволяет осуществлять передачу блока данных с помощью одной инструкции REP INSB или REP OUTSB вместо традици­онных циклов с интенсивными операциями ввода/вывода. Некоторые адаптеры допускают и 16/32-битное обращение к регистру данных ЕРР. Тогда 16- или 32-битное обращение по адресу регистра данных ЕРР приведет к автоматической генерации двух или четырех шинных циклов по нарастающим адресам, начиная со смещения 4. Эти циклы будут выполняться быстрее, чем то же количество одиночных циклов. Таким образом при обмене данными и обеспечивается производительность, достигающая 2 Мбайт/с, вполне достаточная и для адаптеров локальных сетей, внешних дисков, стриммеров и CD-ROM. Адресные циклы БРР всегда выполняются только в однобайтном режиме обра­щения.

Важной чертой ЕРР является то, что обращение процессора к периферийному устройству осуществляется в реальном времени. Программный драйвер всегда способен наблюдать состояние и подавать команды в точно известные моменты времени. Циклы чтения и записи могут чередоваться в произвольном порядке или идти блоками. Такой тип обмена наиболее пригоден для регистро-ориентированной периферии или периферии, работающей в реальном времени — сетевых адаптеров, устройств сбора инфор­мации и управления, дисковых устройств и т. п.