Смекни!
smekni.com

Проектирование модуля АФАР (стр. 2 из 6)

При усреднении Sп ток iк рекомендуется принять равным поло­вине высоты импульса коллекторного тока iк max или амплитуде его первой гармоники, которая в типичных режимах близка к 0,5iк max. Емкость Ск определяют при выбранном напряжении Uк0. На часто­тах

сопротивление r слабо шунтирует емкости и им можно пренебречь. Неравенство
определяет нижнюю час­тотную границу проводимого анализа. При расчете принимают, что в диапазоне СВЧ входной ток мощных транзисторов оказывается близ­ким к гармоническому за счет подавления высших гармоник индуктив­ностью входного электрода. Форма коллекторного напряжения прини­мается гармонической. Поэтому далее будем полагать, что входной ток и коллекторное напряжение не содержат высших гармоник и экви­валентный генератор тока Sп (Uп-U') нагружен на диссипативное сопротив­ление. Расчет производим для граничного режима работы транзис­тора.

Эквивалентная схема усилителя ОЭ для токов и напряжений пер­вой гармоники показана на рис. 3. В схеме ОЭ при диссипативной нагрузке будут отрицательные обратные связи через Lэ и

.

Рис. 3. Эквивалентная схема усилителя ОЭ для токов и напряжений пер­вой гармоники

Для обеспечения устойчивого режима применяют специальные ме­ры, например, включение rдоп в цепь эмиттера или нейтрализацию Lб включением емкости в базовую цепь. Можно исполь­зовать выходное сопротивление моста делителя, если усилитель по­строен по балансной схеме. Сопротивление rвх1 с рос­том мощности уменьшается (до долей ом), xвх1 вблизи верхней частот­ной границы имеет индуктивный характер из-за Lб и Lэ и значитель­но больше rвх1. Коэффициент усиления обратно пропорционален квад­рату частоты. Поэтому, если известно из справочных данных, что транзистор на частоте f ' имеет коэффициент усиления

, то на не­которой, более низкой рабочей частоте f, его коэффициент усиле­ния можно оценить примерно как
, т. е. если
, то Kр будет в четыре раза больше
. В схеме ОЭ при
верхняя рабочая часто­та fв не превышает fгр.

Тип транзистора выбирают по заданной выходной мощности Pвых1 на рабочей частоте f, определяют схему включения транзистора, поль­зуясь справочными данными тран­зис­то­ра. Часто схема включения тран­зистора определяется его конструкцией, в которой с корпусом соеди­няется один из электродов (эмиттер, база). При выборе типа тран­зистора можно ориентироваться на данные экспериментального типо­вого режима. Рекомендуется использовать СВЧ-транзисторы на мощ­ность не менее

, ука­зан­ной в справочнике. Силь­ное недоиспользование транзистора приводит к снижению его усили­тельных свойств. Интервал частот fвfн включает
и
для схемы ОЭ. Применение транзистора, имеющего fн выше рабочей, позволяет полу­чить более высокое усиление, но при этом увеличивается вероят­ность самовозбуждения усилителя и понижается его надежность.

Схема ОБ характерна для транзисторов, работающих на f >1 ГГц. Транзисторы, имеющие два вывода эмиттера (для уменьшения Lэ), следует включать по схеме ОЭ. Для оценки параметров эквивалентной схемы можно использовать следующие данные:

нГн (для OЭ Lобщ=Lэ), Lк и входного вывода — в не­сколько раз больше.
,
,
. Параметр h21э в расчетах не критичен,
для приборов на основе кремния,
, где Pвых1 и Uк0 соответствуют рабочему режиму (например, экспериментальные данные). Если требуемая мощ­ность Pвых1 близка к той, которую может отдать транзистор, то Uк0 берется стандартным. При недоиспользовании транзистора по мощнос­ти целесообразно снижать Uк0, для повышения надежности. Например, если требуемая Pвых1 на 30-40% меньше
(мощности в типовом режи­ме), то Uк0 можно уменьшить на 20-30% по сравнению со стан­дартным. Однако при снижении Uк0 вдвое по сравнению со стандарт­ным частота fгр уменьшается на 5… 15%, а емкость Ск увеличивает­ся на 20... 25%.

Напряжение смещения Uб0 часто выбирается нулевым. При этом угол отсечки будет близок к 80… 90°, при котором соотноше­ние между Pвых1, ηэ, Kр близко к оптимальному. Кроме того, в этом случае отсутствует цепь смещения, что упрощает схему усилителя и не требует затрат мощности на осуществление смещения. В отно­шении Sгр надо иметь в виду, что перед расчетом ее следует уточ­нить, используя условие

(для схемы ОЭ — 0,7; для схемы ОБ — 0,8).

При этом Pвых1 и Uк0 берутся для выбранного транзистора. При невыполнении этого условия можно несколько увеличить Sгр (на 10… 15%).

Предлагаемая методика расчета исходит не из Pвых1, а из мощности Рг, развиваемой эквивалентным генератором тока iг. Мощность Рг в схеме ОЭ следует взять на 10 20% меньше, чем требуемая Pвых1, которая имеет приращение из-за прямого прохождения части входной мощности. На f>frp в схеме ОБ Рг берется на 25... 50% выше Pвых1, на f<frp эта доля меньше.

К начальным параметрам расчета относится температура корпуса транзистора. Ее можно задать как Тк=Тс+(10… 20) °С с учетом перегрева радиатора относительно окружающей среды.

Если после проведения расчета на значения

, f ' в типовом режиме Kр отличается от справочного значения
не более, чем на
, то можно считать, что параметры эквивалентной схемы, принятые в расчете, оценены правильно. Если модуль пикового напряжения
, то это означает, что значение емкости Сэ занижено. Для удобства расчета исходные данные целесообразно свес­ти в таблицу в следующем порядке:

Pвых1, Bт;
Pг, Bт;
f, МГц;
f
гр, МГц;
Uкэ доп, В;
Uкб доп, В;
U
бэ доп, В;
U', В;
Uв0, В;
U
к0, В;
Sгр, А/В;
Rпк, °С/Вт;
Тп, °С;
Тк, °С;
h21э;
Cк, пФ;
C
кп, пФ;
C
э, пФ;
rб, Ом;
r
э, Ом;
r
к, Ом;
Lб, нГн;
L
к, нГн;
L
э, нГн;
Pк доп, Вт.

Приводимый ниже порядок расчета граничного режима работы при Uв0=0 может быть использован для включения транзистора как по схеме ОЭ, так и по схеме ОБ. Там, где формулы расчета для схем ОЭ и ОБ отличаются, будет сделана пометка «ОЭ» или «ОБ». Все расчеты проводятся в системе СИ.

1. Напряженность ξгр режима:

.

2. Амплитуда напряжения и тока первой гармоники эквивалент­ного генератора:

.

3. Пиковое напряжение на коллекторе:

Uк пик = Uк0+Uг1<Uкэ доп.

При невыполнении неравенства следует изменить режим или вы­брать другой тип транзистора.

4. Параметры транзистора:

;
;
.