Смекни!
smekni.com

Имитационное моделирование системы массового обслуживания (стр. 3 из 7)

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины

с любой непрерывной и монотонно возрастающей функцией распределения
достаточно уметь моделировать случайную величину
, равномерно распределенную на отрезке
. Получив реализацию
случайной величины
, можно найти соответствующую ей реализацию
случайной величины
, так как они связаны равенством

(1.6.1)

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром

, где
- интенсивность потока обслуживания. Тогда функция распределения
времени обслуживания имеет вид

Пусть

- реализация случайной величины
, равномерно распределенной на отрезке
, а
- соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.6.1),

.

1.7 Построение имитационных моделей

Первый этап создания любой имитационной модели – этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число

используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений

, показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра
определяются следующим образом:

,
, т.е.
, где

математическое ожидание (среднее значение), находится по формуле

,

исправленная дисперсия,

,

N – число прогонов программы,

– надежность,
.

Глава 2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим четырехканальную систему массового обслуживания (n = 3) с максимальной длиной очереди равной трем (m = 2). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4.0 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 1.0 и показательным законом распределения временем обслуживания.

Данная система имеет 9 состояний, обозначим их:

S0 – все каналы пусты, очередь пуста;

S1 – 1 канал занят, очередь пуста;

S2 – 2 канала заняты, очередь пуста;

S3 – 3 канала заняты, очередь пуста;

S4 – 3 канала заняты, в очереди 1 заявка;

S5 – 3 канала заняты, в очереди 2 заявки;

Вероятности прихода системы в состояния S0, S1, S2, …, S5 соответственно равны Р0, Р1, Р2, …, Р5.

Граф состояний системы массового обслуживания представляет собой схему гибели и размножения. Все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим.

Рис. 3


Для построенного графа запишем уравнения Колмогорова:

Чтобы решить данную систему зададим начальные условия:

Систему уравнений Колмогорова (систему дифференциальных уравнений) решим численным методом Эйлера с помощью программного пакета Maple 8 (см. Приложение 1).

Метод Эйлера


где

- в нашем случае, это правые части уравнений Колмогорова, n=7.