Смекни!
smekni.com

Организация сети передачи данных по энергосетям с применением технологии PLC (стр. 7 из 12)


2.7 Методы подключения к электросетям

Одним из самых важных моментов при организации PLC сети является выбор метода подключения модема к силовой линии. Устройство, которое осуществляет ввод/вывод сигнала называется Каплер (Coupler), в переводе с английского — делитель, ответвитель. Существует два основных физически различных варианта подключения в силовую электросеть:

Емкостный — сигнал подается контактным методом через высокочастотный высоковольтный конденсатор;

Индуктивный — сигнал подается бесконтактным методом через цепь образованную витками петли инжектора и силовыми кабелями.

В коаксиальную сеть сигнал подключается либо через обычный ТВ-сплиттер, либо через частотный ответвитель, называемый диплексером. Для подключения к головной станции использование диплексера обязательно, поскольку он обеспечивает подавление сигнала в сторону ГС более чем на 50 дБ (у сплиттера развязка 22 дБ), а потери инжекции составляют 0,5 дБ (у сплиттера – 3,5) Внешне диплексер не отличается от обычного делителя КТВ.

Рис. 2.3. Диплексер PLD-42

Для подключения к LV сетям (110-240 Вольт) обычно не составляет труда организовать гальваническое соединение, хотя в некоторых случаях без индуктивного соединения не обойтись, например, если гальванический контакт организовать невозможно. В таком случае применяются защелкивающиеся ферритовые клипсы как показано на Рисунке 2.5.:

Рис.2.4. Ферритовые клипсы

Основное правило при индуктивном подключении состоит в том, что сигнальная петля должна образовывать замкнутую цепь с направлением движения в одну сторону по фазе и в другую по нейтрали. Варианты подключения с использованием стандартного однофазного или каплера 1+11 приводятся в презентации Corinex.

Для подключения к средневольтовым сетям (MV) применяются специальные каплеры, состоящие из высоковольтных конденсаторов и ферритов рассчитанные на большой ток. Существуют специализированные компании, производящие такое оборудование, например, Arteche

2.8 Таблица расчета PLC сети

Поскольку PLC технология является разновидностью передачи радиосигналов, то метод расчета сетей PLC подчиняется законам радиотехники. При этом для коаксиальных сетей расчет совпадает с практикой очень хорошо, а для электросетей оказывается весьма приблизительным, прежде всего, из-за отсутствия точной информации о структуре электросети.

Для начала приведем данные производителя, которые дают понятие о запасе бюджета линии (Таблица 1.6.).

Таблица 2.2.

Описание Значение в дБ
Шум в коаксиальном кабеле -125
Шум в электропроводке -110
Мощность передачи HD и GPON шлюзов -50
Мощность передачи стандартных шлюзов -53
Мощность передачи CPE -57
Бюджет линии в коаксиальной 58 … 65 (при SNR =10)
Бюджет линии в силовой сети 43 … 50 (при SNR = 10)

Теперь посмотрим на потери, которые имеют место в реальной сети (Таблица 1.7.):

Таблица 2.3.

Описание Потери, значение в дБ
Однофазный емкостный каплер 1,25
Однофазный индуктивный каплер 4 … 8
Трехфазный емкостный каплер 5
11 + 1 каплер 11,5
Потери в коаксиальном проводе на 30 МГц 2,5 на 100 метров
Потери в силовом медном проводе 6...12 на 100 метров
Потери в подземном медном проводе 10... 20 на 100 метров
Коаксиальный сплиттер на 2 выхода 3,5
Коаксиальный сплиттер на 3 выхода 5
Коаксиальный сплиттер на 4 выхода 7
Разветвление на 2 электропровода 3
На 3 5
На 5 7
На 9 10
На 17 12
Защитный автомат 2 … 5
Электросчетчик 5 … 40

В реальных условиях совсем нетрудно представить такую конфигурацию электропроводки, при которой бюджета линии не хватает для покрытия всего объекта. К счастью, использование репитеров позволяет увеличить максимальное расстояние до 5 раз, хотя это происходит за счет уменьшение максимальной доступной полосы. Мы обнаружили и сформулировали правило «двух щитков», которое гласит, что PLC сигнал может преодолеть не более двух электрощитов. При подключении шлюза в ГРЩ здания, обычно все абоненты сидящие на этажных распределительных щитах могут установить связь с головной станцией.

Приведем таблицу 1.8. физических скоростей соединения PLC в зависимости от соотношения сигнал/шум (SNR):

Таблица 2.4.

SNR дБ TX, Мбит/c. RX, Мбит/c.
14,33 39 23
20,9 78 43
25,52 101 76
30,57 156 86

Таблица 2.5. Пример расчета сети на основании табличных данных.

Объект Потери, дБ
Каплер 3 фазный: 5
Главный Электрощит 3 фазы на 3 группы автоматов каждая, 5 разветвлений 7
Проход автомата ГЭ 3
Этажный провод толстым медным проводом до щитка на 3 этаже, 30 метров. 2
Этажнное УЗО 3
Этажный электрощит на 6 автоматов на фазу (всего 12 на сеть и 3 на свет) 10
Провод до комнаты по этажу 50 метров, тонкий медный кабель 5
4 ответвления на розетки в комнате 4 x 4 16
Всего 35 … 51

Ожидаем, что соединение установится нормально во всех точках комнаты со скоростью около 50 Мбит при использовании шлюза доступа LW. Область покрытия 3 этажа по 12 комнат без использования репитеров.


2.9 Архитектура сети

Разработанная микропрограммная версия позволяет организовать как одноранговые, так и многоранговые сети с топологией точка-точка. Поток данных, отправленный микропроцессором одного узла, получает микропроцессор второго узла.

При использовании версии команд общего назначения, хост машина сохраняет полную гибкость доступа, контроль методом символьной пересылки, конфигурацию и функционирование сети в целом. Интерфейс микропроцессора хост машины полностью соответствует требованиям протокола и поддерживает сетевые микропроцессорные драйвера.

Частотное разделение в PLC

Рис. 2.7. Частотное разделение

Технология Powerline строится на использовании частотного разделения сигнала, при котором высокоскоростной поток данных разбивается на несколько относительно низкоскоростных потоков, после чего каждый из них передается на отдельной поднесу-щей частоте с последующим их объединением в один сигнал (рис. 2.7.).


Рис. 2.8. Обычный FDM

При использовании обычного частотного мультиплексирования (FDM -Frequency-Division Multiplexing) защитные интервалы (Guard Band) между поднесущими, необходимые для предотвращения взаимного влияния сигналов, довольно велики (рис. 2.8.), поэтому доступный спектр используется не очень эффективно.

Рис. 2.9. OFDM

В случае же ортогонального частотно-разделенного мультиплексирования (OFDM) центры поднесущих частот размещены так, что пик каждого последующего сигнала совпадает с нулевым значением предыдущих (рис. 2.9.). Такая схема позволяет более эффективно использовать доступную полосу частот.

Перед тем как отдельные поднесущие частоты будут объединены в один сигнал, они претерпевают фазовую модуляцию (рис. 2.10.), каждая определяется своей последовательностью бит. После этого все они проходят через PowerPacket engine и собираются в единый информационный пакет, который еще называют OFDM-symbol. На рис. 2.11. приведен пример относительной квадратурной фазовой манипуляции (DQPSK - Differential Quadrature Phase Shift Keying) на каждой из 4 поднесущих частот в диапазоне 4-5 МГц.

Рис. 2.10. Фазовая модуляция

Рис. 2.11. DQPSK-модуляция

Реально в технологии Powerline используются 84 поднесущие частоты в диапазоне 4-21 МГц (рис. 2.12.).

Рис. 2.12. Реализация OFDM в технологии Powerline


Теоретическая скорость передачи данных при использовании параллельных потоков с одновременным фазовым модулированием сигналов составляет более 100 Мбит/с. При передаче сигналов по бытовой сети электропитания могут возникать большие затухания в передающей функции на определенных частотах, что приведет к потере данных (рис. 2.13.).