Смекни!
smekni.com

Представление сигналов в базисе несинусоидальных ортогональных функций (стр. 2 из 2)


Получить функции Радемахера можно также с помощью следующего соотношения:

Первые четыре функции Радемахера представлены на рис.1.1 а, б

а) б)

Рис. 1.1. Первые четыре непрерывные функции Радемахера:

a) на интервале [0; 1); б) на интервале [-0.5; 0.5);

Пример разложения функции f(x) в базисе функций Радемахера, используя общую формулу (1.2) представлен на рис 1.2.

, (1.2)

где

Рис.1.2. Пример разложения в базисе функций Радемахера.

Дискретные функции Радемахера

Дискретные функции Радемахера являются отсчетами непрерывных функций Радемахера. Каждый отсчет расположен в середине связанного с ним элемента непрерывной функции. Обозначаются дискретные функции Радемахера как Rad(m,x). Для дискретных функций Радемахера удобно использовать матрицу, каждая строка которой является дискретной функцией Радемахера. Например, для третьей диады (m=3) имеем: (для удобства обозначим “+1” как “+”, а “–1” как “–” )


Функции Хаара и их представление

Множество непрерывных функций Хаара

составляет периодическую, ортонормированную и полную систему функций. Широкое распространение функции Хаара получили в вэйвлет-анализа и сжатии изображений. Рекуррентное соотношение, которое дает возможность сформировать непрерывную функцию
, имеет вид:

где

и
, N – общее количество функций.

Первые восемь функций Хаара представлены на рис. 1.3.


Рис.1.3. Первые восемь непрерывных функции Хаара.

Дискретные функции Хаара

По аналогии с дискретными функциями Радемахера дискретные функции Хаара являются отсчетами непрерывных функций Хаара. Каждый отсчет расположен в середине связанного с ним элемента непрерывной функции. Обозначаются дискретные функции Хаара как

.

Построим матрицу дискретных значений функций Хаара для
, в которой каждая строка отвечает соответствующей функции.

При цифровой обработке сигналов, вэйвлет-анализе, сжатии изображений, анализе и синтезе логических функций, часто применяются ненормированные функции Хаара, которые на отдельных участках принимают одно из трех значений +1; 0; –1.

Преобразование Хаара

Любую интегрируемую на интервале

функцию
можно представить рядом Фурье по системе функций Хаара:

, где
(1.3)

с коэффициентами

. (1.4)

Домашнее задание

1. Выражения для непрерывных функций Радемахера

2.Матрица для системы дискретных функций Радемахера при N = 5.

Rad(0,t) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rad(1,t) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Rad(2,t) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
Rad(3,t) 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
Rad(4,t) 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
Rad(5,t) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

3. Графики функций от

до
.

4. Выражение для нормированных функций Хаара.


5. Графики нормированных функций от

до
.

6. Графики ненормированных функций от

до
.
Выполнение работы

1. Используя преобразование Хаара рассчитаем амплитудный и фазовый спектр заданного сигнала

А. Используем нормированные функции Хаара.


Б. Используем ненормированные функции Хаара

2. Синтезируем заданный сигнал и построим графики для обоих случаев

А. Используем нормированные функции Хаара

Б. Используем ненормированные функции Хаара


Выводы по работе

В данной лабораторной работе мы изучили особенности кусочно-линейных ортогональных функций Радемахера и Харра. Получили выражения для непрерывных функций Харра и Радемахера, построили графики этих функций. Построили матрицу для системы дискретных функций Радемахера при N = 5. Для функций Харра задали и построили графики нормированных и ненормированных функций. Получили практические навыки расчета спектров сложных сигналов, используя преобразование Хаара, найдя амплитудный и фазовый спектры заданного сигнала. После синтезирования сигналов, в случае нормированных функций Харра, получили исходный сигнал только после перехода на нормированное время. Это объясняется погрешностью программных расчетов. В случае же нормированных функций, заданный сигнал получить не удалось из-за, опять же, программных погрешностей вычисления.