Смекни!
smekni.com

Протоколы маршрутизации RIP и OSPF (стр. 4 из 8)

Любая AS может быть разделена на ряд областей (area). Область – это группа смежных сетей и подключенных к ним хостов. Роутеры, имеющие несколько интерфейсов, могут участвовать в нескольких областях. Такие роутеры, которые называются роутерами границы областей (area border routers), поддерживают отдельные топологические базы данных для каждой области.

Топологическая база (topological database) данных фактически представляет собой общую картину сети по отношению к роутерам. Топологическая база данных содержит набор LSA, полученных от всех роутеров, находящихся в одной области. Т.к. роутеры одной области коллективно пользуются одной и той же информацией, они имеют идентичные топологические базы данных.

Термин «домен» (domain) исользуется для описания части сети, в которой все роутери имеют идентичную топологическую базу данных. Термин «домен» часто используется вместо AS.

Топология области является невидимой для объектов, находящихся вне этой области. Путем хранения топологий областей отдельно, OSPF добивается меньшего трафика маршрутизации, чем трафик для случая, когда AS не разделена на области.

Разделение на области приводит к образованию двух различных типов маршрутизации OSPF, которые зависят от того, находятся ли источник и пункт назначения в одной и той же или разных областях.

Маршрутизация внутри области имеет место в том случае, когда источник и пункт назначения находятся в одной области.

Маршрутизация между областями – когда они находятся в разных областях.

Стержневая часть OSPF (backbone) отвечает за распределение маршрутной информации между областями. Она включает в себя все роутеры границы области, сети, которые не принадлежат полностью какого-либо из областей, и подключенные к ним роутеры. На следующем рисунке представлен пример объединенной сети с несколькими областями.


На этом рисунке роутеры 4, 5, 6, 10, 11 и 12 образуют стержень. Если хост Н1 Области 3 захочет отправить пакет хосту Н2 Области 2, то пакет отправляется в роутер 13, который продвигает его в роутер 12, который в свою очередь отправляет его в роутер 11. Роутер 11 продвигает пакет вдоль стержня к роутеру 10 границы области, который отправляет пакет через два внутренних роутера этой области (роутеры 9 и 7) до тех пор, пока он не будет продвинут к хосту Н2.

Сам стержень представляет собой одну из областей OSPF, поэтому все стержневые роутеры используют те же процедуры и алгоритмы поддержания маршрутной информации в пределах стержневой области, которые используются любым другим роутером. Топология стержневой части невидима для всех внутренних роутеров точно также, как топологии отдельных областей невидимы для стержневой части.

Область может быть определена таким образом, что стержневая часть не будет смежной с ней. В этом случае связность стержневой части должна быть восстановлена через виртуальные соединения. Виртуальные соединения формируются между любыми роутерами стержневой области, которые совместно используют какую-либо связь с любой из нестержневых областей; они функционируют так, как если бы они были непосредственными связями.

Граничные роутеры AS, использующие OSPF, узнают о внешних роутерах через протоколы внешних роутеров (EGPs), таких, как Exterior Gateway Protocol (EGP) или Border Gateway Protocol (BGP), или через информацию о конфигурации.

Спецификации.

· RFC‑1245. Анализ протокола OSPF.

· RFC‑1246. Экспериментальная часть работы протокола.

· RFC‑1247 (обновлено 1349). Спецификации к протоколу OSPF версии 2.

· RFC‑1248, RFC‑1850. База управляющей информации протокола второй версии.

· RFC‑1584. Дополнение к протоколу по широковещанию.

· RFC‑1585. Расширение протокола по широковещанию, анализ и практические приложения.

· RFC‑1586. Руководство по использованию OSPF на сетях FrameRelay.

· RFC‑1587. Опция протокола для «не совсем тупиковой зоны» (Not-so-stubby area).

· RFC‑1793. Расширение к спецификациям по требованию к оборудованию с поддержкой протокола.

· RFC‑2178. Черновой вариант спецификаций.

· RFC‑2328 (STD 0054). Действующий стандарт по OSPF.

Реализация протокола.

Метрики.

Метрика сети, оценивающая пропускную способность, определяется как количество секунд, требуемое для передачи 100 Мбит через физическую среду данной сети. Например, метрика сети на базе 10Base-T Ethernet равна 10, а метрика выделенной линии 56 кбит/с равна 1785. Метрика канала со скоростью передачи данных 100 Мбит/с и выше равна единице.

Порядок расчета метрик, оценивающих надежность, задержку и стоимость, не определен. Администратор, желающий поддерживать маршрутизацию по этим типам сервисов, должен сам назначить разумные и согласованные метрики по этим параметрам.

Если не требуется маршрутизация с учетом типа сервиса (или маршрутизатор ее не поддерживает), используется метрика по умолчанию, равная метрике по пропускной способности.

База данных состояния связей

Для работы алгоритма SPF на каждом маршрутизаторе строится база данных состояния связей, представляющая собой полное описание графа OSPF‑системы. При этом вершинами графа являются маршрутизаторы, а ребрами – соединяющие их связи. Базы данных на всех маршрутизаторах идентичны.

За создание баз данных и поддержку их взаимной синхронизации при изменениях в структуре системы сетей отвечают другие алгоритмы, содержащиеся в протоколе OSPF.

Поддержка множественных маршрутов.

Если между двумя узлами сети существует несколько маршрутов с одинаковыми или близкими по значению метриками, протокол OSPF позволяет направлять части трафика по этим маршрутам в пропорции, соответствующей значениям метрик. Например, если существует два альтернативных маршрута с метриками 1 и 2, то две трети трафика будет направлено по первому из них, а оставшаяся треть – по второму.

Положительный эффект такого механизма заключается в уменьшении средней задержки прохождения дейтаграмм между отправителем и получателем, а также в уменьшении колебаний значения средней задержки.

Менее очевидное преимущество поддержки множественных маршрутов состоит в следующем. Если при использовании только одного из возможных маршрутов этот маршрут внезапно выходит из строя, весь трафик будет разом перемаршрутизирован на альтернативный маршрут, при этом во время процесса массового переключения больших объемов трафика с одного маршрута на другой весьма велика вероятность образования затора на новом маршруте. Если же до аварии использовалось разделение трафика по нескольким маршрутам, отказ одного из них вызовет перемаршрутизацию лишь части трафика, что существенно сгладит нежелательные эффекты.

Внешние маршруты.

Для достижения сетей, не входящих в OSPF‑систему (в автономную систему), используются пограничные маршрутизаторы автономной системы (autonomous system border router, ASBR), имеющие связи, уходящие за пределы системы.

ASBR вносят в базу данных состояния связей данные о сетях за пределами системы, достижимых через тот или иной ASBR. Такие сети, а также ведущие к ним маршруты называются внешними (external).

В простейшем случае, если в системе имеется только один ASBR, он объявляет через себя маршрут по умолчанию (default route) и все дейтаграммы, адресованные в сети, не входящие в базу данных системы, отправляются через этот маршрутизатор.

Если в системе имеется несколько ASBR, то, возможно, внутренним маршрутизаторам системы придется выбирать, через какой именно пограничный маршрутизатор нужно отправлять дейтаграммы в ту или иную внешнюю сеть. Это делается на основе специальных записей, вносимых ASBR в базу данных системы. Эти записи содержат адрес и маску внешней сети и метрику расстояния до нее, которая может быть, а может и не быть сравнимой с метриками, используемыми в OSPF‑системе (см. также п. 5.5.12). Если возможно, адреса нескольких внешних сетей агрегируются в общий адрес с более короткой маской.

ASBR может получать информацию о внешних маршрутах от протоколов внешней маршрутизации, а также все или некоторые внешние маршруты могут быть сконфигурированы администратором (в том числе единственный маршрут по умолчанию).

Сети множественного доступа

Протокол OSPF особым образом выделяет сети множественного доступа, то есть сети, где каждый узел может непосредственно связаться с каждым. Такие сети могут также поддерживать широковещательную передачу и мультикастинг (broadcast networks, например, Ethernet, FDDI) или не поддерживать таковой (non-broadcast multi-access networks, NBMA, например, Х.25, Frame Relay, ATM). Следуя модели работы протоколов состояния связей, связь каждой пары маршрутизаторов должна рассматриваться как связь типа «точка-точка», что значит: каждый маршрутизатор должен установить смежность с каждым, то есть всего N (N‑1)/2 отношений смежности, по которым происходит обмен всеми типами сообщений.

Протокол OSPF сводит ситуацию только к N отношениям смежности, выбирая среди всех маршрутизаторов данной широковещательной сети один выделенный маршрутизатор (designated router, DR), с которым все остальные маршрутизаторы устанавливают отношения смежности.

Это значит, что каждый «невыделенный» маршрутизатор поддерживает синхронизацию базы данных состояния связей не со всеми соседями, а только с выделенным маршрутизатором. При этом протокол затопления в подобной сети работает следующим образом: «обычный» маршрутизатор сообщает об изменении состояния своих связей выделенному маршрутизатору, а тот затапливает сеть этим сообщением и его получают все остальные маршрутизаторы сети. Естественно, что по своим внешним интерфейсам, ведущим к прочим маршрутизаторам системы, не находящимся в данной сети множественного доступа, каждый маршрутизатор отправляет сообщения без участия выделенного маршрутизатора.